These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 8283248)

  • 21. Spatially opponent excitation and inhibition in simple cells of the cat visual cortex.
    Ferster D
    J Neurosci; 1988 Apr; 8(4):1172-80. PubMed ID: 3357015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Orientation selectivity and the spatial distribution of enhancement and suppression in receptive fields of cat striate cortex cells.
    Heggelund P; Moors J
    Exp Brain Res; 1983; 52(2):235-47. PubMed ID: 6641885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mathematical model for the self-organization of orientation columns in visual cortex.
    Miyashita M; Tanaka S
    Neuroreport; 1992 Jan; 3(1):69-72. PubMed ID: 1611037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diversity of Ocular Dominance Patterns in Visual Cortex Originates from Variations in Local Cortical Retinotopy.
    Najafian S; Jin J; Alonso JM
    J Neurosci; 2019 Nov; 39(46):9145-9163. PubMed ID: 31558616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Haphazard wiring of simple receptive fields and orientation columns in visual cortex.
    Ringach DL
    J Neurophysiol; 2004 Jul; 92(1):468-76. PubMed ID: 14999045
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between preferred orientation and receptive field position of neurons in extrastriate cortex (area 19) in the cat.
    Leventhal AG; Schall JD; Wallace W
    J Comp Neurol; 1984 Jan; 222(3):445-51. PubMed ID: 6699212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition in Simple Cell Receptive Fields Is Broad and OFF-Subregion Biased.
    Taylor MM; Sedigh-Sarvestani M; Vigeland L; Palmer LA; Contreras D
    J Neurosci; 2018 Jan; 38(3):595-612. PubMed ID: 29196320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibitory circuits accounting for development of visual cortical mappings, stimulus preferences, and psychophysical performance.
    Dobson VG
    Perception; 1981; 10(5):483-510. PubMed ID: 7339568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An emergent model of orientation selectivity in cat visual cortical simple cells.
    Somers DC; Nelson SB; Sur M
    J Neurosci; 1995 Aug; 15(8):5448-65. PubMed ID: 7643194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17.
    Murthy A; Humphrey AL
    J Neurophysiol; 1999 Mar; 81(3):1212-24. PubMed ID: 10085348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cross-correlation analysis of geniculostriate neuronal relationships in cats.
    Tanaka K
    J Neurophysiol; 1983 Jun; 49(6):1303-18. PubMed ID: 6875624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuromorphic VLSI vision system for real-time texture segregation.
    Shimonomura K; Yagi T
    Neural Netw; 2008 Oct; 21(8):1197-204. PubMed ID: 18723317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organization of suppression in receptive fields of neurons in cat visual cortex.
    DeAngelis GC; Robson JG; Ohzawa I; Freeman RD
    J Neurophysiol; 1992 Jul; 68(1):144-63. PubMed ID: 1517820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Origins of feature selectivities and maps in the mammalian primary visual cortex.
    Vidyasagar TR; Eysel UT
    Trends Neurosci; 2015 Aug; 38(8):475-85. PubMed ID: 26209463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Receptive-field maps of correlated discharge between pairs of neurons in the cat's visual cortex.
    Ghose GM; Ohzawa I; Freeman RD
    J Neurophysiol; 1994 Jan; 71(1):330-46. PubMed ID: 8158235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The contribution of vertical and horizontal connections to the receptive field center and surround in V1.
    Chisum HJ; Fitzpatrick D
    Neural Netw; 2004; 17(5-6):681-93. PubMed ID: 15288892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial summation in the receptive fields of simple cells in the cat's striate cortex.
    Movshon JA; Thompson ID; Tolhurst DJ
    J Physiol; 1978 Oct; 283():53-77. PubMed ID: 722589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Principles underlying sensory map topography in primary visual cortex.
    Kremkow J; Jin J; Wang Y; Alonso JM
    Nature; 2016 May; 533(7601):52-7. PubMed ID: 27120164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development.
    DeAngelis GC; Ohzawa I; Freeman RD
    J Neurophysiol; 1993 Apr; 69(4):1091-117. PubMed ID: 8492151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A model for the origin and development of visual orientation selectivity.
    Nguyen G; Freeman AW
    PLoS Comput Biol; 2019 Jul; 15(7):e1007254. PubMed ID: 31356590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.