BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 8283267)

  • 1. The role of active smooth-muscle contraction in the occurrence of chronic vasospasm in the canine two-hemorrhage model.
    Matsui T; Kaizu H; Itoh S; Asano T
    J Neurosurg; 1994 Feb; 80(2):276-82. PubMed ID: 8283267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible role of protein kinase C-dependent smooth muscle contraction in the pathogenesis of chronic cerebral vasospasm.
    Matsui T; Takuwa Y; Johshita H; Yamashita K; Asano T
    J Cereb Blood Flow Metab; 1991 Jan; 11(1):143-9. PubMed ID: 1983998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the protein kinase C-mediated contractile system in canine basilar artery undergoing chronic vasospasm.
    Matsui T; Sugawa M; Johshita H; Takuwa Y; Asano T
    Stroke; 1991 Sep; 22(9):1183-7. PubMed ID: 1926262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Cerebral posthemorrhagic vasospasm. A sequential in vivo and in vitro study of the basilar artery of the rabbit].
    Vorkapic P
    Zentralbl Neurochir; 1990; 51(1):1-17. PubMed ID: 2275298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interrelation between protein kinase C and nitric oxide in the development of vasospasm after subarachnoid hemorrhage.
    Nishizawa S; Yamamoto S; Uemura K
    Neurol Res; 1996 Feb; 18(1):89-95. PubMed ID: 8714544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of inhibitors of protein kinase C and calpain in experimental delayed cerebral vasospasm.
    Minami N; Tani E; Maeda Y; Yamaura I; Fukami M
    J Neurosurg; 1992 Jan; 76(1):111-8. PubMed ID: 1370069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations of mechanical properties in canine basilar arteries after subarachnoid hemorrhage.
    Kim P; Sundt TM; Vanhoutte PM
    J Neurosurg; 1989 Sep; 71(3):430-6. PubMed ID: 2769393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical and phenotypic changes in the vasospastic canine basilar artery after subarachnoid hemorrhage.
    Yamaguchi-Okada M; Nishizawa S; Koide M; Nonaka Y
    J Appl Physiol (1985); 2005 Nov; 99(5):2045-52. PubMed ID: 16051708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronological changes of the contractile mechanism in prolonged vasospasm after subarachnoid hemorrhage: from protein kinase C to protein tyrosine kinase.
    Koide M; Nishizawa S; Ohta S; Yokoyama T; Namba H
    Neurosurgery; 2002 Dec; 51(6):1468-74; discussion 1474-6. PubMed ID: 12445353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of HA compound calcium antagonists on delayed cerebral vasospasm in dogs.
    Takayasu M; Suzuki Y; Shibuya M; Asano T; Kanamori M; Okada T; Kageyama N; Hidaka H
    J Neurosurg; 1986 Jul; 65(1):80-5. PubMed ID: 3712031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between cytosolic Ca2+ level and contractile tension in canine basilar artery of chronic vasospasm.
    Yamada T; Tanaka Y; Fujimoto K; Nakahara N; Shinoda S; Masuzawa T
    Neurosurgery; 1994 Mar; 34(3):496-503; discussion 503-4. PubMed ID: 8190226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological and morphological effects of in vitro transluminal balloon angioplasty on normal and vasospastic canine basilar arteries.
    Chan PD; Findlay JM; Vollrath B; Cook DA; Grace M; Chen MH; Ashforth RA
    J Neurosurg; 1995 Sep; 83(3):522-30. PubMed ID: 7666232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impairment in biochemical level of arterial dilative capability of a cyclic nucleotides-dependent pathway by induced vasospasm in the canine basilar artery.
    Todo H; Ohta S; Wang J; Ichikawa H; Ohue S; Kumon Y; Sakaki S
    J Cereb Blood Flow Metab; 1998 Jul; 18(7):808-17. PubMed ID: 9663510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of Rho-associated kinase during augmented contraction of the basilar artery to serotonin after subarachnoid hemorrhage.
    Watanabe Y; Faraci FM; Heistad DD
    Am J Physiol Heart Circ Physiol; 2005 Jun; 288(6):H2653-8. PubMed ID: 15665056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of endothelin in experimental cerebral vasospasm.
    Roux S; Löffler BM; Gray GA; Sprecher U; Clozel M; Clozel JP
    Neurosurgery; 1995 Jul; 37(1):78-85; discussion 85-6. PubMed ID: 8587695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity of smooth muscle phosphatases 1 and 2A in rabbit basilar artery in vasospasm.
    Fukami M; Tani E; Takai A; Yamaura I; Minami N
    Stroke; 1995 Dec; 26(12):2321-7. PubMed ID: 7491658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelin and the production of cerebral vasospasm in dogs.
    Asano T; Ikegaki I; Suzuki Y; Satoh S; Shibuya M
    Biochem Biophys Res Commun; 1989 Mar; 159(3):1345-51. PubMed ID: 2649099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible mechanism to induce protein kinase C-dependent arterial smooth muscle contraction after subarachnoid haemorrhage.
    Ohta S; Nishihara J; Oka Y; Todo H; Kumon Y; Sakaki S
    Acta Neurochir (Wien); 1995; 137(3-4):217-25. PubMed ID: 8789664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired calcium regulation of smooth muscle during chronic vasospasm following subarachnoid hemorrhage.
    Kim P; Yoshimoto Y; Iino M; Tomio S; Kirino T; Nonomura Y
    J Cereb Blood Flow Metab; 1996 Mar; 16(2):334-41. PubMed ID: 8594067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Papaverine-sensitive vasospasm and arterial contractility and compliance after subarachnoid hemorrhage in dogs.
    Macdonald RL; Zhang J; Sima B; Johns L
    Neurosurgery; 1995 Nov; 37(5):962-7; discussion 967-8. PubMed ID: 8559346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.