These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8283971)

  • 41. Effect of oxygen free radicals on cardiovascular function at organ and cellular levels.
    Prasad K; Kalra J; Chan WP; Chaudhary AK
    Am Heart J; 1989 Jun; 117(6):1196-202. PubMed ID: 2729049
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calmodulin participation in oxygen radical-induced cardiac sarcoplasmic reticulum calcium uptake reduction.
    Okabe E; Kato Y; Sasaki H; Saito G; Hess ML; Ito H
    Arch Biochem Biophys; 1987 Jun; 255(2):464-8. PubMed ID: 3036009
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cardiac myofibrillar creatine kinase is not influenced by hypothyroidism.
    Dowell RT; Martin AF
    Can J Physiol Pharmacol; 1985 Jun; 63(6):627-9. PubMed ID: 2931168
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scavenging effect of Chinonin on NO and oxygen free radicals and its protective effect on the myocardium from the injury of ischemia-reperfusion.
    Zhao B; Shen J; Li M; Li M; Wan Q; Xin W
    Biochim Biophys Acta; 1996 Mar; 1315(2):131-7. PubMed ID: 8608170
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Injury to rat hearts produced by an exogenous free radical generating system. Study into the role of arachidonic acid and eicosanoids.
    Basu DK; Karmazyn M
    J Pharmacol Exp Ther; 1987 Aug; 242(2):673-85. PubMed ID: 3112369
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Free radical mediation of the effects of acidosis on calcium transport by cardiac sarcoplasmic reticulum in whole heart homogenates.
    Hess ML; Okabe E; Ash P; Kontos HA
    Cardiovasc Res; 1984 Mar; 18(3):149-57. PubMed ID: 6322991
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chronic xanthine oxidase inhibition prevents myofibrillar protein oxidation and preserves cardiac function in a transgenic mouse model of cardiomyopathy.
    Duncan JG; Ravi R; Stull LB; Murphy AM
    Am J Physiol Heart Circ Physiol; 2005 Oct; 289(4):H1512-8. PubMed ID: 15863459
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bactericidal activity of a superoxide anion-generating system. A model for the polymorphonuclear leukocyte.
    Rosen H; Klebanoff SJ
    J Exp Med; 1979 Jan; 149(1):27-39. PubMed ID: 216766
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphorylase and creatine kinase modification by thiol-disulfide exchange and by xanthine oxidase-initiated S-thiolation.
    Miller RM; Sies H; Park EM; Thomas JA
    Arch Biochem Biophys; 1990 Feb; 276(2):355-63. PubMed ID: 2106288
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle.
    Rubanyi GM; Vanhoutte PM
    Am J Physiol; 1986 May; 250(5 Pt 2):H815-21. PubMed ID: 3085520
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prostaglandins attenuate cardiac contractile dysfunction produced by free radical generation but not by hydrogen peroxide.
    Zimmer KM; Karmazyn M
    Mol Cell Biochem; 1997 Nov; 176(1-2):171-8. PubMed ID: 9406159
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reversible MM-creatine kinase binding to cardiac myofibrils.
    Ventura-Clapier R; Saks VA; Vassort G; Lauer C; Elizarova GV
    Am J Physiol; 1987 Sep; 253(3 Pt 1):C444-55. PubMed ID: 3307451
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of sulphydryl compounds in the defense of rat gastric epithelial cells against oxygen reactive metabolite-induced damage.
    Romano M; Razandi M; Ivey KJ
    Ital J Gastroenterol; 1991 Feb; 23(2):55-9. PubMed ID: 1747503
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toxic effects of oxygen-derived free radicals on rat pancreatic acini; an in vitro study.
    Tamura K; Manabe T; Imanishi K; Nishikawa H; Ohshio G; Tobe T
    Hepatogastroenterology; 1992 Dec; 39(6):536-9. PubMed ID: 1282895
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Creatine kinase in regulation of heart function and metabolism. I. Further evidence for compartmentation of adenine nucleotides in cardiac myofibrillar and sarcolemmal coupled ATPase-creatine kinase systems.
    Saks VA; Ventura-Clapier R; Huchua ZA; Preobrazhensky AN; Emelin IV
    Biochim Biophys Acta; 1984 Apr; 803(4):254-64. PubMed ID: 6231056
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reduced vulnerability of the hypertrophied rat heart to oxygen-radical injury.
    Gupta M; Gameiro A; Singal PK
    Can J Physiol Pharmacol; 1987 Jun; 65(6):1157-64. PubMed ID: 2957040
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Superoxide radical production by allopurinol and xanthine oxidase.
    Galbusera C; Orth P; Fedida D; Spector T
    Biochem Pharmacol; 2006 Jun; 71(12):1747-52. PubMed ID: 16650385
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synergic effects of NO and oxygen free radicals in the injury of ischemia-reperfused myocardium--ESR studies on NO free radicals generated from ischemia-reperfused myocardium.
    Zhao B; Shen J; Hu J; Wan Q; Xin W
    Sci China C Life Sci; 1996 Oct; 39(5):491-500. PubMed ID: 9772352
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Depression of cardiac sarcolemmal phospholipase D activity by oxidant-induced thiol modification.
    Dai J; Meij JT; Padua R; Panagia V
    Circ Res; 1992 Oct; 71(4):970-7. PubMed ID: 1516167
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of peroxynitrite on isolated cardiac trabeculae: selective impact on myofibrillar energetic controllers.
    Mihm MJ; Yu F; Reiser PJ; Bauer JA
    Biochimie; 2003 Jun; 85(6):587-96. PubMed ID: 12829376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.