BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 8284203)

  • 1. The long extra arms of human tRNA((Ser)Sec) and tRNA(Ser) function as major identify elements for serylation in an orientation-dependent, but not sequence-specific manner.
    Wu XQ; Gross HJ
    Nucleic Acids Res; 1993 Dec; 21(24):5589-94. PubMed ID: 8284203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into substrate promiscuity of human seryl-tRNA synthetase.
    Holman KM; Puppala AK; Lee JW; Lee H; Simonović M
    RNA; 2017 Nov; 23(11):1685-1699. PubMed ID: 28808125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal tRNA(Ser) and tRNA(Sec) substrates for human seryl-tRNA synthetase: contribution of tRNA domains to serylation and tertiary structure.
    Heckl M; Busch K; Gross HJ
    FEBS Lett; 1998 May; 427(3):315-9. PubMed ID: 9637248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm.
    Ohama T; Yang DC; Hatfield DL
    Arch Biochem Biophys; 1994 Dec; 315(2):293-301. PubMed ID: 7986071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec).
    Amberg R; Mizutani T; Wu XQ; Gross HJ
    J Mol Biol; 1996 Oct; 263(1):8-19. PubMed ID: 8890909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing seryl-tRNA synthetase for improved serylation of selenocysteine tRNAs.
    Fu X; Crnković A; Sevostyanova A; Söll D
    FEBS Lett; 2018 Nov; 592(22):3759-3768. PubMed ID: 30317559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identity determinants of human tRNA(Ser): sequence elements necessary for serylation and maturation of a tRNA with a long extra arm.
    Achsel T; Gross HJ
    EMBO J; 1993 Aug; 12(8):3333-8. PubMed ID: 8344269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure of selenocysteine-inserting tRNA(Sec) from Escherichia coli. Comparison with canonical tRNA(Ser).
    Baron C; Westhof E; Böck A; Giegé R
    J Mol Biol; 1993 May; 231(2):274-92. PubMed ID: 8510147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SerRS-tRNASec complex structures reveal mechanism of the first step in selenocysteine biosynthesis.
    Wang C; Guo Y; Tian Q; Jia Q; Gao Y; Zhang Q; Zhou C; Xie W
    Nucleic Acids Res; 2015 Dec; 43(21):10534-45. PubMed ID: 26433229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dual identities of mammalian tRNA(Sec) for SerRS and selenocysteine synthase.
    Mizutani T; Kanaya K; Ikeda S; Fujiwara T; Yamada K; Totsuka T
    Mol Biol Rep; 1998 Nov; 25(4):211-6. PubMed ID: 9870610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The discriminator bases G73 in human tRNA(Ser) and A73 in tRNA(Leu) have significantly different roles in the recognition of aminoacyl-tRNA synthetases.
    Breitschopf K; Gross HJ
    Nucleic Acids Res; 1996 Feb; 24(3):405-10. PubMed ID: 8602350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Only one nucleotide insertion to the long variable arm confers an efficient serine acceptor activity upon Saccharomyces cerevisiae tRNA(Leu) in vitro.
    Himeno H; Yoshida S; Soma A; Nishikawa K
    J Mol Biol; 1997 May; 268(4):704-11. PubMed ID: 9175855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli seryl-tRNA synthetase recognizes tRNA(Ser) by its characteristic tertiary structure.
    Asahara H; Himeno H; Tamura K; Nameki N; Hasegawa T; Shimizu M
    J Mol Biol; 1994 Feb; 236(3):738-48. PubMed ID: 8114091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The length and the secondary structure of the D-stem of human selenocysteine tRNA are the major identity determinants for serine phosphorylation.
    Wu XQ; Gross HJ
    EMBO J; 1994 Jan; 13(1):241-8. PubMed ID: 8306966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic O-phosphoseryl-tRNASec kinase.
    Sherrer RL; Ho JM; Söll D
    Nucleic Acids Res; 2008 Apr; 36(6):1871-80. PubMed ID: 18267971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tertiary structure of bacterial selenocysteine tRNA.
    Itoh Y; Sekine S; Suetsugu S; Yokoyama S
    Nucleic Acids Res; 2013 Jul; 41(13):6729-38. PubMed ID: 23649835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seryl-tRNA synthetase specificity for tRNA
    de Freitas Fernandes A; Serrão VHB; Scortecci JF; Thiemann OH
    Biochim Biophys Acta Proteins Proteom; 2020 Aug; 1868(8):140438. PubMed ID: 32330624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The exchange of the discriminator base A73 for G is alone sufficient to convert human tRNA(Leu) into a serine-acceptor in vitro.
    Breitschopf K; Gross HJ
    EMBO J; 1994 Jul; 13(13):3166-9. PubMed ID: 8039509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identity elements of human tRNA(Leu): structural requirements for converting human tRNA(Ser) into a leucine acceptor in vitro.
    Breitschopf K; Achsel T; Busch K; Gross HJ
    Nucleic Acids Res; 1995 Sep; 23(18):3633-7. PubMed ID: 7478989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The T-loop region of animal mitochondrial tRNA(Ser)(AGY) is a main recognition site for homologous seryl-tRNA synthetase.
    Ueda T; Yotsumoto Y; Ikeda K; Watanabe K
    Nucleic Acids Res; 1992 May; 20(9):2217-22. PubMed ID: 1375735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.