BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

767 related articles for article (PubMed ID: 8284673)

  • 21. Biochemical and genetic data suggest that InhA is not the primary target for activated isoniazid in Mycobacterium tuberculosis.
    Mdluli K; Sherman DR; Hickey MJ; Kreiswirth BN; Morris S; Stover CK; Barry CE
    J Infect Dis; 1996 Nov; 174(5):1085-90. PubMed ID: 8896513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast-growing, non-infectious and intracellularly surviving drug-resistant Mycobacterium aurum: a model for high-throughput antituberculosis drug screening.
    Gupta A; Bhakta S; Kundu S; Gupta M; Srivastava BS; Srivastava R
    J Antimicrob Chemother; 2009 Oct; 64(4):774-81. PubMed ID: 19656786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ahpC, a gene involved in isoniazid resistance of the Mycobacterium tuberculosis complex.
    Wilson TM; Collins DM
    Mol Microbiol; 1996 Mar; 19(5):1025-34. PubMed ID: 8830260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance.
    Musser JM; Kapur V; Williams DL; Kreiswirth BN; van Soolingen D; van Embden JD
    J Infect Dis; 1996 Jan; 173(1):196-202. PubMed ID: 8537659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [GenoType MTBDR plus 1.0® for the detection of cross-resistance between isoniazide and ethionamide in isolates of multidrug-resistant Mycobacterium tuberculosis].
    Rueda J; Realpe T; Mejía G; Zapata E; Robledo J
    Biomedica; 2015; 35(4):541-8. PubMed ID: 26844443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis.
    Quémard A; Sacchettini JC; Dessen A; Vilcheze C; Bittman R; Jacobs WR; Blanchard JS
    Biochemistry; 1995 Jul; 34(26):8235-41. PubMed ID: 7599116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis.
    Dias MV; Vasconcelos IB; Prado AM; Fadel V; Basso LA; de Azevedo WF; Santos DS
    J Struct Biol; 2007 Sep; 159(3):369-80. PubMed ID: 17588773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of InhA activity, but not KasA activity, induces formation of a KasA-containing complex in mycobacteria.
    Kremer L; Dover LG; Morbidoni HR; Vilchèze C; Maughan WN; Baulard A; Tu SC; Honoré N; Deretic V; Sacchettini JC; Locht C; Jacobs WR; Besra GS
    J Biol Chem; 2003 Jun; 278(23):20547-54. PubMed ID: 12654922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis.
    Heym B; Alzari PM; Honoré N; Cole ST
    Mol Microbiol; 1995 Jan; 15(2):235-45. PubMed ID: 7746145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid.
    Parikh SL; Xiao G; Tonge PJ
    Biochemistry; 2000 Jul; 39(26):7645-50. PubMed ID: 10869170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mutations of katG and inhA genes of isoniazid-resistant Mycobacterium tuberculosis isolates in Taiwan.
    Tseng ST; Tai CH; Li CR; Lin CF; Shi ZY
    J Microbiol Immunol Infect; 2015 Jun; 48(3):249-55. PubMed ID: 24184004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overproduction of mycobacterial ribosomal protein S13 induces catalase/peroxidase activity and hypersensitivity to isoniazid in Mycobacterium smegmatis.
    Dubnau E; Soares S; Huang TJ; Jacobs WR
    Gene; 1996 Apr; 170(1):17-22. PubMed ID: 8621083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New isoniazid/ethionamide resistance gene mutation and screening for multidrug-resistant Mycobacterium tuberculosis strains.
    Ristow M; Möhlig M; Rifai M; Schatz H; Feldmann K; Pfeiffer A
    Lancet; 1995 Aug; 346(8973):502-3. PubMed ID: 7637495
    [No Abstract]   [Full Text] [Related]  

  • 34. Detection of katG and inhA mutations to guide isoniazid and ethionamide use for drug-resistant tuberculosis.
    Bollela VR; Namburete EI; Feliciano CS; Macheque D; Harrison LH; Caminero JA
    Int J Tuberc Lung Dis; 2016 Aug; 20(8):1099-104. PubMed ID: 27393546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel selection for isoniazid (INH) resistance genes supports a role for NAD+-binding proteins in mycobacterial INH resistance.
    Chen P; Bishai WR
    Infect Immun; 1998 Nov; 66(11):5099-106. PubMed ID: 9784509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene: implications for sensitivity to isoniazid.
    Deretic V; Philipp W; Dhandayuthapani S; Mudd MH; Curcic R; Garbe T; Heym B; Via LE; Cole ST
    Mol Microbiol; 1995 Sep; 17(5):889-900. PubMed ID: 8596438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis.
    Rozwarski DA; Grant GA; Barton DH; Jacobs WR; Sacchettini JC
    Science; 1998 Jan; 279(5347):98-102. PubMed ID: 9417034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis isolates collected in Australia.
    Lavender C; Globan M; Sievers A; Billman-Jacobe H; Fyfe J
    Antimicrob Agents Chemother; 2005 Oct; 49(10):4068-74. PubMed ID: 16189082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic integration combined with molecular dynamic simulations to explore the cross-resistance mechanism of isoniazid and ethionamide.
    Zhang Q; Yang Y; Gong X; Zhao N; Zhang Y; Liu H
    Proteins; 2022 May; 90(5):1142-1151. PubMed ID: 34981576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Precise null deletion mutations of the mycothiol synthesis genes reveal their role in isoniazid and ethionamide resistance in Mycobacterium smegmatis.
    Xu X; Vilchèze C; Av-Gay Y; Gómez-Velasco A; Jacobs WR
    Antimicrob Agents Chemother; 2011 Jul; 55(7):3133-9. PubMed ID: 21502624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.