These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 8285684)
1. A new mechanism for the aerobic catabolism of dimethyl sulfide. Visscher PT; Taylor BF Appl Environ Microbiol; 1993 Nov; 59(11):3784-9. PubMed ID: 8285684 [TBL] [Abstract][Full Text] [Related]
2. Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium. Visscher PT; Taylor BF Appl Environ Microbiol; 1993 Dec; 59(12):4083-9. PubMed ID: 8285707 [TBL] [Abstract][Full Text] [Related]
3. Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m. Kanagawa T; Mikami E Appl Environ Microbiol; 1989 Mar; 55(3):555-8. PubMed ID: 2930168 [TBL] [Abstract][Full Text] [Related]
4. Dimethyl sulfide biofiltration using immobilized Hyphomicrobium VS and Thiobacillus thioparus TK-m in sugarcane bagasse. Treto Fernández H; Rodríguez Rico I; Jover de la Prida J; Van Langenhove H Environ Technol; 2013; 34(1-4):257-62. PubMed ID: 23530338 [TBL] [Abstract][Full Text] [Related]
5. Performance and microbial analysis of defined and non-defined inocula for the removal of dimethyl sulfide in a biotrickling filter. Sercu B; Boon N; Beken SV; Verstraete W; Van Langenhove H Biotechnol Bioeng; 2007 Mar; 96(4):661-72. PubMed ID: 16921530 [TBL] [Abstract][Full Text] [Related]
6. Dimethyl sulphide degradation using immobilized Thiobacillus thioparus in a biotrickling filter. Arellano-García L; Revah S; Ramírez M; Gómez JM; Cantero D Environ Technol; 2009 Nov; 30(12):1273-9. PubMed ID: 19950469 [TBL] [Abstract][Full Text] [Related]
7. Methylated sulfur compounds in microbial mats: in situ concentrations and metabolism by a colorless sulfur bacterium. Visscher PT; Quist P; van Gemerden H Appl Environ Microbiol; 1991 Jun; 57(6):1758-63. PubMed ID: 1872604 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem. Vlasceanu L; Popa R; Kinkle BK Appl Environ Microbiol; 1997 Aug; 63(8):3123-7. PubMed ID: 9251199 [TBL] [Abstract][Full Text] [Related]
9. Aerobic turnover of dimethyl sulfide by the anoxygenic phototrophic bacterium thiocapsa roseopersicina. Jonkers HM; Jansen M; Van der Maarel MJ ; Van Gemerden H Arch Microbiol; 1999 Sep; 172(3):150-6. PubMed ID: 10460885 [TBL] [Abstract][Full Text] [Related]
10. Isolation of Methylophaga spp. from marine dimethylsulfide-degrading enrichment cultures and identification of polypeptides induced during growth on dimethylsulfide. Schäfer H Appl Environ Microbiol; 2007 Apr; 73(8):2580-91. PubMed ID: 17322322 [TBL] [Abstract][Full Text] [Related]
11. Growth kinetics of Hyphomicrobium and Thiobacillus spp. in mixed cultures degrading dimethyl sulfide and methanol. Hayes AC; Liss SN; Allen DG Appl Environ Microbiol; 2010 Aug; 76(16):5423-31. PubMed ID: 20562269 [TBL] [Abstract][Full Text] [Related]
12. Thiobacillus sp. W5, the dominant autotroph oxidizing sulfide to sulfur in a reactor for aerobic treatment of sulfidic wastes. Visser JM; Stefess GC; Robertson LA; Kuenen JG Antonie Van Leeuwenhoek; 1997 Aug; 72(2):127-34. PubMed ID: 9298191 [TBL] [Abstract][Full Text] [Related]
13. Competition for Dimethyl Sulfide and Hydrogen Sulfide by Methylophaga sulfidovorans and Thiobacillus thioparus T5 in Continuous Cultures. De Zwart J; Sluis J; Kuenen JG Appl Environ Microbiol; 1997 Aug; 63(8):3318-22. PubMed ID: 16535680 [TBL] [Abstract][Full Text] [Related]
14. Anaerobic versus aerobic degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Lomans BP; den Camp HJ; Pol A; Vogels GD Appl Environ Microbiol; 1999 Feb; 65(2):438-43. PubMed ID: 9925565 [TBL] [Abstract][Full Text] [Related]
15. Effect of Thiobacillus thioparus 1904 and sulphur addition on odour emission during aerobic composting. Gu W; Sun W; Lu Y; Li X; Xu P; Xie K; Sun L; Wu H Bioresour Technol; 2018 Feb; 249():254-260. PubMed ID: 29049984 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Lomans BP; Maas R; Luderer R; Op den Camp HJ; Pol A; van der Drift C; Vogels GD Appl Environ Microbiol; 1999 Aug; 65(8):3641-50. PubMed ID: 10427061 [TBL] [Abstract][Full Text] [Related]
17. Utilization of dimethyl sulfide as a sulfur source with the aid of light by Marinobacterium sp. strain DMS-S1. Fuse H; Takimura O; Murakami K; Yamaoka Y; Omori T Appl Environ Microbiol; 2000 Dec; 66(12):5527-32. PubMed ID: 11097944 [TBL] [Abstract][Full Text] [Related]
18. Two Distinct Aerobic Methionine Salvage Pathways Generate Volatile Methanethiol in Rhodopseudomonas palustris. Miller AR; North JA; Wildenthal JA; Tabita FR mBio; 2018 Apr; 9(2):. PubMed ID: 29636438 [TBL] [Abstract][Full Text] [Related]
19. Identification of thiobacilli by replica plating on thallous sulfide paper. Galizzi A; Ferrari E Appl Environ Microbiol; 1976 Sep; 32(3):433-5. PubMed ID: 791118 [TBL] [Abstract][Full Text] [Related]
20. Energetic aspects of the metabolism of reduced sulphur compounds in Thiobacillus dentrificans. Hoor AT Antonie Van Leeuwenhoek; 1976; 42(4):483-92. PubMed ID: 1087862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]