These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 8285688)
1. Use of 5-cyano-2,3-ditolyl tetrazolium chloride for quantifying planktonic and sessile respiring bacteria in drinking water. Schaule G; Flemming HC; Ridgway HF Appl Environ Microbiol; 1993 Nov; 59(11):3850-7. PubMed ID: 8285688 [TBL] [Abstract][Full Text] [Related]
2. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Rodriguez GG; Phipps D; Ishiguro K; Ridgway HF Appl Environ Microbiol; 1992 Jun; 58(6):1801-8. PubMed ID: 1622256 [TBL] [Abstract][Full Text] [Related]
3. Flow cytometric analysis of 5-cyano-2,3-ditolyl tetrazolium chloride activity of marine bacterioplankton in dilution cultures. Sieracki ME; Cucci TL; Nicinski J Appl Environ Microbiol; 1999 Jun; 65(6):2409-17. PubMed ID: 10347021 [TBL] [Abstract][Full Text] [Related]
4. Double staining (CTC-DAPI) for detection and enumeration of viable but non-culturable Campylobacter jejuni cells. Cappelier JM; Lazaro B; Rossero A; Fernandez-Astorga A; Federighi M Vet Res; 1997; 28(6):547-55. PubMed ID: 9428148 [TBL] [Abstract][Full Text] [Related]
5. Factors affecting the determination of respiratory activity on the basis of cyanoditolyl tetrazolium chloride reduction with membrane filtration. Pyle BH; Broadaway SC; McFeters GA Appl Environ Microbiol; 1995 Dec; 61(12):4304-9. PubMed ID: 16535184 [TBL] [Abstract][Full Text] [Related]
6. CTC staining and counting of actively respiring bacteria in natural stone using confocal laser scanning microscopy. Bartosch S; Mansch R; Knötzsch K; Bock E J Microbiol Methods; 2003 Jan; 52(1):75-84. PubMed ID: 12401229 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Zimmermann R; Iturriaga R; Becker-Birck J Appl Environ Microbiol; 1978 Dec; 36(6):926-35. PubMed ID: 367268 [TBL] [Abstract][Full Text] [Related]
8. Rapid in situ assessment of physiological activities in bacterial biofilms using fluorescent probes. Yu FP; McFeters GA J Microbiol Methods; 1994; 20():1-10. PubMed ID: 11541290 [TBL] [Abstract][Full Text] [Related]
9. Large differences in the fraction of active bacteria in plankton, sediments, and biofilm. Haglund AL; Törnblom E; Boström B; Tranvik L Microb Ecol; 2002 Mar; 43(2):232-41. PubMed ID: 12023730 [TBL] [Abstract][Full Text] [Related]
10. Rapid and automated detection of fluorescent total bacteria in water samples. Lepeuple AS; Gilouppe S; Pierlot E; De Roubin MR Int J Food Microbiol; 2004 May; 92(3):327-32. PubMed ID: 15145591 [TBL] [Abstract][Full Text] [Related]
11. Behaviors of physiologically active bacteria in water environment and chlorine disinfection. Sawaya K; Kaneko N; Fukushi K; Yaguchi J Water Sci Technol; 2008; 58(7):1343-8. PubMed ID: 18957745 [TBL] [Abstract][Full Text] [Related]
12. Nonuniform spatial patterns of respiratory activity within biofilms during disinfection. Huang CT; Yu FP; McFeters GA; Stewart PS Appl Environ Microbiol; 1995 Jun; 61(6):2252-6. PubMed ID: 7793945 [TBL] [Abstract][Full Text] [Related]
13. Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. Schwartz T; Hoffmann S; Obst U J Appl Microbiol; 2003; 95(3):591-601. PubMed ID: 12911708 [TBL] [Abstract][Full Text] [Related]
14. The optimization and application of two direct viable count methods for bacteria in distributed drinking water. Coallier J; Prévost M; Rompré A; Duchesne D Can J Microbiol; 1994 Oct; 40(10):830-6. PubMed ID: 8000961 [TBL] [Abstract][Full Text] [Related]
15. A rapid, direct method for enumerating respiring enterohemorrhagic Escherichia coli O157:H7 in water. Pyle BH; Broadaway SC; McFeters GA Appl Environ Microbiol; 1995 Jul; 61(7):2614-9. PubMed ID: 7618872 [TBL] [Abstract][Full Text] [Related]
16. Application of a tetrazolium dye as an indicator of viability in anaerobic bacteria. Bhupathiraju VK; Hernandez M; Landfear D; Alvarez-Cohen L J Microbiol Methods; 1999 Sep; 37(3):231-43. PubMed ID: 10480267 [TBL] [Abstract][Full Text] [Related]
17. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) reduction in a mesophilic anaerobic digester: measuring redox behavior, differentiating abiotic reduction, and comparing FISH response as an activity indicator. Gruden CL; Fevig S; Abu-Dalo M; Hernandez M J Microbiol Methods; 2003 Jan; 52(1):59-68. PubMed ID: 12401227 [TBL] [Abstract][Full Text] [Related]
18. Enumeration of respiring Pseudomonas spp. in milk within 6 hours by fluorescence in situ hybridization following formazan reduction. Kitaguchi A; Yamaguchi N; Nasu M Appl Environ Microbiol; 2005 May; 71(5):2748-52. PubMed ID: 15870367 [TBL] [Abstract][Full Text] [Related]
19. A new direct microscopy based method for evaluating in-situ bioremediation. Bhupathiraju VK; Hernandez M; Krauter P; Alvarez-Cohen L J Hazard Mater; 1999 Jun; 67(3):299-312. PubMed ID: 10370182 [TBL] [Abstract][Full Text] [Related]
20. Application of a fluorescent redox dye for enumeration of metabolically active bacteria on albumin-coated titanium surfaces. McDowell SG; An YH; Draughn RA; Friedman RJ Lett Appl Microbiol; 1995 Jul; 21(1):1-4. PubMed ID: 7544985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]