These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 8285714)

  • 1. Fermentation of lactose by yeast cells secreting recombinant fungal lactase.
    Ramakrishnan S; Hartley BS
    Appl Environ Microbiol; 1993 Dec; 59(12):4230-5. PubMed ID: 8285714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of lactose-consuming Saccharomyces cerevisiae for lactose fermentation into ethanol fuel.
    Zou J; Guo X; Shen T; Dong J; Zhang C; Xiao D
    J Ind Microbiol Biotechnol; 2013 Apr; 40(3-4):353-63. PubMed ID: 23344501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiae.
    Rubio-Texeira M; Castrillo JI; Adam AC; Ugalde UO; Polaina J
    Yeast; 1998 Jun; 14(9):827-37. PubMed ID: 9818720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncoupling glucose sensing from GAL metabolism for heterologous lactose fermentation in Saccharomyces cerevisiae.
    Zou J; Chen X; Hu Y; Xiao D; Guo X; Chang X; Zhou L
    Biotechnol Lett; 2021 Aug; 43(8):1607-1616. PubMed ID: 33937967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous hydrolysis and co-fermentation of whey lactose with wheat for ethanol production.
    Jin Y; Parashar A; Mason B; Bressler DC
    Bioresour Technol; 2016 Dec; 221():616-624. PubMed ID: 27693727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae.
    Peter Smits H; Hauf J; Müller S; Hobley TJ; Zimmermann FK; Hahn-Hägerdal B; Nielsen J; Olsson L
    Yeast; 2000 Oct; 16(14):1325-34. PubMed ID: 11015729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant.
    Guimarães PM; François J; Parrou JL; Teixeira JA; Domingues L
    Appl Environ Microbiol; 2008 Mar; 74(6):1748-56. PubMed ID: 18245248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GAL4 of Saccharomyces cerevisiae activates the lactose-galactose regulon of Kluyveromyces lactis and creates a new phenotype: glucose repression of the regulon.
    Riley MI; Hopper JE; Johnston SA; Dickson RC
    Mol Cell Biol; 1987 Feb; 7(2):780-6. PubMed ID: 3102945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation.
    Domingues L; Guimarães PM; Oliveira C
    Bioeng Bugs; 2010; 1(3):164-71. PubMed ID: 21326922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Derepression of galactose metabolism in melibiase producing bakers' and distillers' yeast.
    Rønnow B; Olsson L; Nielsen J; Mikkelsen JD
    J Biotechnol; 1999 Jun; 72(1-2):213-28. PubMed ID: 12680392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a flocculent Saccharomyces cerevisiae strain secreting high levels of Aspergillus niger beta-galactosidase.
    Domingues L; Teixeira JA; Penttilä M; Lima N
    Appl Microbiol Biotechnol; 2002 Apr; 58(5):645-50. PubMed ID: 11956748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of beta-D-galactosidase synthesis in Candida pseudotropicalis.
    Pedrique M; Castillo FJ
    Appl Environ Microbiol; 1982 Feb; 43(2):303-10. PubMed ID: 6800304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permeabilization of Kluyveromyces marxianus with mild detergent for whey lactose hydrolysis and augmentation of mixed culture.
    Yadav JS; Bezawada J; Yan S; Tyagi RD; Surampalli RY
    Appl Biochem Biotechnol; 2014 Mar; 172(6):3207-22. PubMed ID: 24500798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentation of whey and starch by transformed Saccharomyces cerevisiae cells.
    Compagno C; Porro D; Smeraldi C; Ranzi BM
    Appl Microbiol Biotechnol; 1995 Oct; 43(5):822-5. PubMed ID: 7576548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose-galactose transitions.
    van den Brink J; Akeroyd M; van der Hoeven R; Pronk JT; de Winde JH; Daran-Lapujade P
    Microbiology (Reading); 2009 Apr; 155(Pt 4):1340-1350. PubMed ID: 19332835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae.
    Garcia Sanchez R; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Microb Cell Fact; 2010 May; 9():40. PubMed ID: 20507616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolysis of lactose in whey permeate for subsequent fermentation to ethanol.
    Coté A; Brown WA; Cameron D; van Walsum GP
    J Dairy Sci; 2004 Jun; 87(6):1608-20. PubMed ID: 15453474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of yeast immobilized-cell fluidized-bed bioreactors systems in ethanol fermentation from lactose-hydrolyzed whey and whey permeate.
    Gabardo S; Pereira GF; Klein MP; Rech R; Hertz PF; Ayub MA
    Bioprocess Biosyst Eng; 2016 Jan; 39(1):141-50. PubMed ID: 26527573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.
    Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS
    Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.