These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8286328)

  • 1. Characterization of covalently bound enzyme inhibitors as transition-state analogs by protein stability measurements: phosphonate monoester inhibitors of a beta-lactamase.
    Rahil J; Pratt RF
    Biochemistry; 1994 Jan; 33(1):116-25. PubMed ID: 8286328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic evaluation of a covalently bonded transition state analogue inhibitor: inhibition of beta-lactamases by phosphonates.
    Nagarajan R; Pratt RF
    Biochemistry; 2004 Aug; 43(30):9664-73. PubMed ID: 15274621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of inhibition of the class C beta-lactamase of Enterobacter cloacae P99 by phosphonate monoesters.
    Rahil J; Pratt RF
    Biochemistry; 1992 Jun; 31(25):5869-78. PubMed ID: 1610830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and mechanism of beta-lactamase inhibition by phosphonamidates: the quest for a proton.
    Rahil J; Pratt RF
    Biochemistry; 1993 Oct; 32(40):10763-72. PubMed ID: 8399224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphonate monoester inhibitors of class A beta-lactamases.
    Rahil J; Pratt RF
    Biochem J; 1991 May; 275 ( Pt 3)(Pt 3):793-5. PubMed ID: 1903928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a beta-lactamase transition-state analog.
    Lobkovsky E; Billings EM; Moews PC; Rahil J; Pratt RF; Knox JR
    Biochemistry; 1994 Jun; 33(22):6762-72. PubMed ID: 8204611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of inhibition of the class C beta-lactamase of Enterobacter cloacae P99 by cyclic acyl phosph(on)ates: rescue by return.
    Kaur K; Lan MJ; Pratt RF
    J Am Chem Soc; 2001 Oct; 123(43):10436-43. PubMed ID: 11673973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noncovalent interaction energies in covalent complexes: TEM-1 beta-lactamase and beta-lactams.
    Wang X; Minasov G; Shoichet BK
    Proteins; 2002 Apr; 47(1):86-96. PubMed ID: 11870868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of an acylation transition-state analog of the TEM-1 beta-lactamase. Mechanistic implications for class A beta-lactamases.
    Maveyraud L; Pratt RF; Samama JP
    Biochemistry; 1998 Feb; 37(8):2622-8. PubMed ID: 9485412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of a phosphonate-inhibited beta-lactamase. An analog of the tetrahedral transition state/intermediate of beta-lactam hydrolysis.
    Chen CC; Rahil J; Pratt RF; Herzberg O
    J Mol Biol; 1993 Nov; 234(1):165-78. PubMed ID: 8230196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of the stabilization by substrate of Staphylococcus aureus PC1 beta-lactamase.
    Lejeune A; Vanhove M; Lamotte-Brasseur J; Pain RH; Frère JM; Matagne A
    Chem Biol; 2001 Aug; 8(8):831-42. PubMed ID: 11514231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-secondary and solvent deuterium kinetic isotope effects on beta-lactamase catalysis.
    Adediran SA; Deraniyagala SA; Xu Y; Pratt RF
    Biochemistry; 1996 Mar; 35(11):3604-13. PubMed ID: 8639512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of inhibition of the PC1 beta-lactamase of Staphylococcus aureus by cephalosporins: importance of the 3'-leaving group.
    Faraci WS; Pratt RF
    Biochemistry; 1985 Feb; 24(4):903-10. PubMed ID: 3873255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of the metallo-beta-lactamase from B. fragilis: structural and dynamic effects of inhibitor binding.
    Salsbury FR; Crowley MF; Brooks CL
    Proteins; 2001 Sep; 44(4):448-59. PubMed ID: 11484222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of a Staphylococcus aureus beta-lactamase-dicloxacillin complex and kinetic studies on the reactivation of the enzyme.
    Hardy LW; Kirsch JF
    Arch Biochem Biophys; 1989 Jan; 268(1):338-48. PubMed ID: 2783544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of AmpC beta-lactamase through a destabilizing interaction in the active site.
    Trehan I; Beadle BM; Shoichet BK
    Biochemistry; 2001 Jul; 40(27):7992-9. PubMed ID: 11434768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based design guides the improved efficacy of deacylation transition state analogue inhibitors of TEM-1 beta-Lactamase(,).
    Ness S; Martin R; Kindler AM; Paetzel M; Gold M; Jensen SE; Jones JB; Strynadka NC
    Biochemistry; 2000 May; 39(18):5312-21. PubMed ID: 10820001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and kinetics of the beta-lactamase mutants S70A and K73H from Staphylococcus aureus PC1.
    Chen CC; Smith TJ; Kapadia G; Wäsch S; Zawadzke LE; Coulson A; Herzberg O
    Biochemistry; 1996 Sep; 35(38):12251-8. PubMed ID: 8823158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, function, and inhibition along the reaction coordinate of CTX-M beta-lactamases.
    Chen Y; Shoichet B; Bonnet R
    J Am Chem Soc; 2005 Apr; 127(15):5423-34. PubMed ID: 15826180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of beta-lactamases by monocyclic acyl phosph(on)ates.
    Kaur K; Adediran SA; Lan MJ; Pratt RF
    Biochemistry; 2003 Feb; 42(6):1529-36. PubMed ID: 12578365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.