These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 8286336)

  • 1. Glycoforms modify the dynamic stability and functional activity of an enzyme.
    Rudd PM; Joao HC; Coghill E; Fiten P; Saunders MR; Opdenakker G; Dwek RA
    Biochemistry; 1994 Jan; 33(1):17-22. PubMed ID: 8286336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of glycosylation on protein structure and dynamics in ribonuclease B and some of its individual glycoforms.
    Joao HC; Dwek RA
    Eur J Biochem; 1993 Nov; 218(1):239-44. PubMed ID: 8243469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of glycosylation on protein conformation and amide proton exchange rates in RNase B.
    Joao HC; Scragg IG; Dwek RA
    FEBS Lett; 1992 Aug; 307(3):343-6. PubMed ID: 1322837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structural basis of the difference in sensitivity for PNGase F in the de-N-glycosylation of the native bovine pancreatic ribonucleases B and BS.
    Blanchard V; Frank M; Leeflang BR; Boelens R; Kamerling JP
    Biochemistry; 2008 Mar; 47(11):3435-46. PubMed ID: 18293928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous estimation of the association constants of glycoprotein glycoforms to a common protein by capillary electrophoresis.
    Uegaki K; Taga A; Akada Y; Suzuki S; Honda S
    Anal Biochem; 2002 Oct; 309(2):269-78. PubMed ID: 12413461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary electrophoresis-electrospray mass spectrometry for the characterization of high-mannose-type N-glycosylation and differential oxidation in glycoproteins by charge reversal and protease/glycosidase digestion.
    Liu T; Li JD; Zeng R; Shao XX; Wang KY; Xia QC
    Anal Chem; 2001 Dec; 73(24):5875-85. PubMed ID: 11791556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and Dynamics of N-Glycosylated Human Ribonuclease 1.
    Kilgore HR; Latham AP; Ressler VT; Zhang B; Raines RT
    Biochemistry; 2020 Sep; 59(34):3148-3156. PubMed ID: 32544330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting the action of bovine ribonuclease A and pancreatic-type ribonucleases on double-stranded RNA.
    Libonati M; Sorrentino S
    Mol Cell Biochem; 1992 Nov; 117(2):139-51. PubMed ID: 1488047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-performance liquid chromatography based strategy for rapid, sensitive sequencing of N-linked oligosaccharide modifications to proteins in sodium dodecyl sulphate polyacrylamide electrophoresis gel bands.
    Rudd PM; Colominas C; Royle L; Murphy N; Hart E; Merry AH; Hebestreit HF; Dwek RA
    Proteomics; 2001 Feb; 1(2):285-94. PubMed ID: 11680875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of N-glycosylation sites and site heterogeneity in glycoproteins.
    An HJ; Peavy TR; Hedrick JL; Lebrilla CB
    Anal Chem; 2003 Oct; 75(20):5628-37. PubMed ID: 14710847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of glycosylation on the in vivo circulating half-life of ribonuclease.
    Baynes JW; Wold F
    J Biol Chem; 1976 Oct; 251(19):6016-24. PubMed ID: 972151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of double-stranded RNA by human pancreatic ribonuclease: crucial role of noncatalytic basic amino acid residues.
    Sorrentino S; Naddeo M; Russo A; D'Alessio G
    Biochemistry; 2003 Sep; 42(34):10182-90. PubMed ID: 12939146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational stability is a determinant of ribonuclease A cytotoxicity.
    Klink TA; Raines RT
    J Biol Chem; 2000 Jun; 275(23):17463-7. PubMed ID: 10747991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of RNase Sa by the inhibitor barstar: structure of the complex at 1.7 A resolution.
    Sevcík J; Urbanikova L; Dauter Z; Wilson KS
    Acta Crystallogr D Biol Crystallogr; 1998 Sep; 54(Pt 5):954-63. PubMed ID: 9757110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consequences of the Endogenous N-Glycosylation of Human Ribonuclease 1.
    Ressler VT; Raines RT
    Biochemistry; 2019 Feb; 58(7):987-996. PubMed ID: 30633504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human seminal ribonuclease. A tool to check the role of basic charges and glycosylation of a ribonuclease in the action of the enzyme on double-stranded RNA.
    Sorrentino S; Lavitrano M; De Prisco R; Libonati M
    Biochim Biophys Acta; 1985 Feb; 827(2):135-9. PubMed ID: 3967033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site determination of protein glycosylation based on digestion with immobilized nonspecific proteases and Fourier transform ion cyclotron resonance mass spectrometry.
    Clowers BH; Dodds ED; Seipert RR; Lebrilla CB
    J Proteome Res; 2007 Oct; 6(10):4032-40. PubMed ID: 17824634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic approach to protein glycosylation analysis: a path through the maze.
    Mariño K; Bones J; Kattla JJ; Rudd PM
    Nat Chem Biol; 2010 Oct; 6(10):713-23. PubMed ID: 20852609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosylation: heterogeneity and the 3D structure of proteins.
    Rudd PM; Dwek RA
    Crit Rev Biochem Mol Biol; 1997; 32(1):1-100. PubMed ID: 9063619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation-independent binding of monoglucosylated ribonuclease B to calnexin.
    Zapun A; Petrescu SM; Rudd PM; Dwek RA; Thomas DY; Bergeron JJ
    Cell; 1997 Jan; 88(1):29-38. PubMed ID: 9019402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.