These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 8286368)

  • 1. Nitrogenase and biological nitrogen fixation.
    Kim J; Rees DC
    Biochemistry; 1994 Jan; 33(2):389-97. PubMed ID: 8286368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii.
    Georgiadis MM; Komiya H; Chakrabarti P; Woo D; Kornuc JJ; Rees DC
    Science; 1992 Sep; 257(5077):1653-9. PubMed ID: 1529353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation.
    Howard JB; Rees DC
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17088-93. PubMed ID: 17088547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen fixation: the mechanism of the Mo-dependent nitrogenase.
    Igarashi RY; Seefeldt LC
    Crit Rev Biochem Mol Biol; 2003; 38(4):351-84. PubMed ID: 14551236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide hydrolysis and protein conformational changes in Azotobacter vinelandii nitrogenase iron protein: defining the function of aspartate 129.
    Lanzilotta WN; Ryle MJ; Seefeldt LC
    Biochemistry; 1995 Aug; 34(34):10713-23. PubMed ID: 7662655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum.
    Schlessman JL; Woo D; Joshua-Tor L; Howard JB; Rees DC
    J Mol Biol; 1998 Jul; 280(4):669-85. PubMed ID: 9677296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1996 Dec; 35(51):16770-6. PubMed ID: 8988014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selenocyanate derived Se-incorporation into the nitrogenase Fe protein cluster.
    Buscagan TM; Kaiser JT; Rees DC
    Elife; 2022 Jul; 11():. PubMed ID: 35904245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of biological nitrogen fixation.
    Rees DC; Akif Tezcan F; Haynes CA; Walton MY; Andrade S; Einsle O; Howard JB
    Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):971-84; discussion 1035-40. PubMed ID: 15901546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogenase structure and function: a biochemical-genetic perspective.
    Peters JW; Fisher K; Dean DR
    Annu Rev Microbiol; 1995; 49():335-66. PubMed ID: 8561464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex.
    Lanzilotta WN; Fisher K; Seefeldt LC
    Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of a homocitrate-free iron-molybdenum cluster on NifEN: implications for the role of homocitrate in nitrogenase assembly.
    Fay AW; Blank MA; Yoshizawa JM; Lee CC; Wiig JA; Hu Y; Hodgson KO; Hedman B; Ribbe MW
    Dalton Trans; 2010 Mar; 39(12):3124-30. PubMed ID: 20221547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogenases.
    Sickerman NS; Hu Y; Ribbe MW
    Methods Mol Biol; 2019; 1876():3-24. PubMed ID: 30317471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characterization of the nitrogenase molybdenum-iron protein with the substrate acetylene trapped near the active site.
    Keable SM; Vertemara J; Zadvornyy OA; Eilers BJ; Danyal K; Rasmussen AJ; De Gioia L; Zampella G; Seefeldt LC; Peters JW
    J Inorg Biochem; 2018 Mar; 180():129-134. PubMed ID: 29275221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.
    Brown KA; Harris DF; Wilker MB; Rasmussen A; Khadka N; Hamby H; Keable S; Dukovic G; Peters JW; Seefeldt LC; King PW
    Science; 2016 Apr; 352(6284):448-50. PubMed ID: 27102481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of Mo-dependent nitrogenase.
    Seefeldt LC; Hoffman BM; Dean DR
    Annu Rev Biochem; 2009; 78():701-22. PubMed ID: 19489731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogenase Bioelectrochemistry for Synthesis Applications.
    Milton RD; Minteer SD
    Acc Chem Res; 2019 Dec; 52(12):3351-3360. PubMed ID: 31800207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MgATP-Bound and nucleotide-free structures of a nitrogenase protein complex between the Leu 127 Delta-Fe-protein and the MoFe-protein.
    Chiu H; Peters JW; Lanzilotta WN; Ryle MJ; Seefeldt LC; Howard JB; Rees DC
    Biochemistry; 2001 Jan; 40(3):641-50. PubMed ID: 11170380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fe protein-independent substrate reduction by nitrogenase MoFe protein variants.
    Danyal K; Rasmussen AJ; Keable SM; Inglet BS; Shaw S; Zadvornyy OA; Duval S; Dean DR; Raugei S; Peters JW; Seefeldt LC
    Biochemistry; 2015 Apr; 54(15):2456-62. PubMed ID: 25831270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.