These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8286677)

  • 1. Predictive modelling of hydroxyapatite-polyethylene composite.
    Guild FJ; Bonfield W
    Biomaterials; 1993 Oct; 14(13):985-93. PubMed ID: 8286677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing and mechanical properties of HA/UHMWPE nanocomposites.
    Fang L; Leng Y; Gao P
    Biomaterials; 2006 Jul; 27(20):3701-7. PubMed ID: 16564570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of mechanical properties of composites of HDPE/HA/EAA.
    Albano C; Perera R; Cataño L; Karam A; González G
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):467-75. PubMed ID: 21316635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cross-linking model for estimating Young's modulus of artificial bone tissue grown on carbon nanotube scaffold.
    Saffar KP; Arshi AR; JamilPour N; Najafi AR; Rouhi G; Sudak L
    J Biomed Mater Res A; 2010 Aug; 94(2):594-602. PubMed ID: 20198697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hydroxyapatite morphology/surface area on the rheology and processability of hydroxyapatite filled polyethylene composites.
    Joseph R; McGregor WJ; Martyn MT; Tanner KE; Coates PD
    Biomaterials; 2002 Nov; 23(21):4295-302. PubMed ID: 12194532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization of ultra-high molecular weight polyethylene-hydroxyapatite nanocomposites.
    Crowley J; Chalivendra VB
    Biomed Mater Eng; 2008; 18(3):149-60. PubMed ID: 18725695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyapatite-reinforced polyethylene as an analogous material for bone replacement.
    Bonfield W
    Ann N Y Acad Sci; 1988; 523():173-7. PubMed ID: 2837942
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of filler surface morphology on the impact behaviour of hydroxyapatite reinforced high density polyethylene composites.
    Zhang Y; Tanner KE
    J Mater Sci Mater Med; 2008 Feb; 19(2):761-6. PubMed ID: 17619972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of particle morphology and polyethylene molecular weight on the fracture toughness of hydroxyapatite reinforced polyethylene composite.
    Eniwumide JO; Joseph R; Tanner KE
    J Mater Sci Mater Med; 2004 Oct; 15(10):1147-52. PubMed ID: 15516877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of partially stabilized zirconia on the mechanical properties of the hydroxyapatite-polyethylene composites.
    Sadi AY; Homaeigohar SSh; Khavandi AR; Javadpour J
    J Mater Sci Mater Med; 2004 Aug; 15(8):853-8. PubMed ID: 15477736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications.
    Fang L; Leng Y; Gao P
    Biomaterials; 2005 Jun; 26(17):3471-8. PubMed ID: 15621236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective laser sintering of hydroxyapatite reinforced polyethylene composites for bioactive implants and tissue scaffold development.
    Hao L; Savalani MM; Zhang Y; Tanner KE; Harris RA
    Proc Inst Mech Eng H; 2006 May; 220(4):521-31. PubMed ID: 16808068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UHMWPE/HA biocomposite compatibilized by organophilic montmorillonite: An evaluation of the mechanical-tribological properties and its hemocompatibility and performance in simulated blood fluid.
    Macuvele DLP; Colla G; Cesca K; Ribeiro LFB; da Costa CE; Nones J; Breitenbach ER; Porto LM; Soares C; Fiori MA; Riella HG
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():411-423. PubMed ID: 30948077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Material removal during the sliding of hydroxyapatite against UHMWPE.
    Mazeau G; Czernuszka JT
    Biomed Mater Eng; 2001; 11(4):283-92. PubMed ID: 11790860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical behavior of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength.
    Fritsch A; Dormieux L; Hellmich C; Sanahuja J
    J Biomed Mater Res A; 2009 Jan; 88(1):149-61. PubMed ID: 18286602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing and tensile properties of hydroxyapatite-whisker-reinforced polyetheretherketone.
    Converse GL; Yue W; Roeder RK
    Biomaterials; 2007 Feb; 28(6):927-35. PubMed ID: 17113143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of disc-type crystal shape for micromechanical predictions of elasticity and strength of hydroxyapatite biomaterials.
    Fritsch A; Hellmich C; Dormieux L
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1913-35. PubMed ID: 20308109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uniaxial and biaxial ratcheting behavior of ultra-high molecular weight polyethylene.
    Gao H; Wang J; Li F; Gao L; Zhang Z
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():295-306. PubMed ID: 29752101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of hydroxyapatite and OH-carbonated hydroxyapatite single crystals.
    Teraoka K; Ito A; Maekawa K; Onuma K; Tateishi T; Tsutsumi S
    J Dent Res; 1998 Jul; 77(7):1560-8. PubMed ID: 9663442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface characterization for ultrahigh molecular weight polyethylene/hydroxyapatite gradient composites prepared by the gelation/crystallization method.
    Shi X; Bin Y; Hou D; Matsuo M
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1768-80. PubMed ID: 23414054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.