These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 8286725)

  • 1. Polysaccharide-protein interaction: a rheological study of the gel-sol transition of a gelatin-methylcellulose-water system.
    Nishinari K; Hofmann KE; Kohyama K; Moritaka H; Nishinari N; Watase M
    Biorheology; 1993; 30(3-4):243-52. PubMed ID: 8286725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A thermoreversible double gel: characterization of a methylcellulose and kappa-carrageenan mixed system in water by SAXS, DSC and rheology.
    Tomsic M; Prossnigg F; Glatter O
    J Colloid Interface Sci; 2008 Jun; 322(1):41-50. PubMed ID: 18417143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ observation of heat- and pressure-induced gelation of methylcellulose by fluorescence measurement.
    Su L; Wang Z; Yang K; Minamikawa Y; Kometani N; Nishinari K
    Int J Biol Macromol; 2014 Mar; 64():409-14. PubMed ID: 24361668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology and Rheology of a Cool-Gel (Protein) Blended with a Thermo-Gel (Hydroxypropyl Methylcellulose).
    Ji Z; Yu L; Duan Q; Miao S; Liu H; Shen W; Jin W
    Foods; 2022 Jan; 11(1):. PubMed ID: 35010254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheological properties of reversible thermo-setting in situ gelling solutions with the methylcellulose-polyethylene glycol-citric acid ternary system (2): Effects of various water-soluble polymers and salts on the gelling temperature.
    Shimokawa K; Saegusa K; Ishii F
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):56-8. PubMed ID: 19615868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and rheology of gelatin and collagen gels.
    Djabourov M; Lechaire JP; Gaill F
    Biorheology; 1993; 30(3-4):191-205. PubMed ID: 8286722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase separation and gel formation in kinetically trapped gelatin/maltodextrin gels.
    Lorén N; Hermansson AM
    Int J Biol Macromol; 2000 Jul; 27(4):249-62. PubMed ID: 10921851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of fish gelatin-gum arabic complex coacervates as influenced by phase separation temperature.
    Anvari M; Pan CH; Yoon WB; Chung D
    Int J Biol Macromol; 2015 Aug; 79():894-902. PubMed ID: 26054661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of zein-pectin composite particles on the stability and rheological properties of gelatin/hydroxypropyl methylcellulose water-water systems.
    Hu X; Zhu C; Hu Z; Shen W; Ji Z; Li F; Guo C
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131846. PubMed ID: 38663702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and properties of aqueous methylcellulose gels by small-angle neutron scattering.
    Chatterjee T; Nakatani AI; Adden R; Brackhagen M; Redwine D; Shen H; Li Y; Wilson T; Sammler RL
    Biomacromolecules; 2012 Oct; 13(10):3355-69. PubMed ID: 22994294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cooling-heating rate on sol-gel transformation of fish gelatin-gum arabic complex coacervate phase.
    Anvari M; Chung D
    Int J Biol Macromol; 2016 Oct; 91():450-6. PubMed ID: 27246375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological properties of casein micelle gels: the influence of calcium concentration on gelation induced by rennet.
    Nakamura K; Niki R
    Biorheology; 1993; 30(3-4):207-16. PubMed ID: 8286723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermo-rheological properties of chitosan hydrogels with hydroxypropyl methylcellulose and methylcellulose.
    Dos Santos Carvalho JD; Rabelo RS; Hubinger MD
    Int J Biol Macromol; 2022 Jun; 209(Pt A):367-375. PubMed ID: 35413310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of gelatin gelation kinetics on probe diffusion determined by FRAP and rheology.
    Hagman J; Lorén N; Hermansson AM
    Biomacromolecules; 2010 Dec; 11(12):3359-66. PubMed ID: 21053900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyelectrolyte Polysaccharide-Gelatin Complexes: Rheology and Structure.
    Derkach SR; Kuchina YA; Kolotova DS; Voron'ko NG
    Polymers (Basel); 2020 Jan; 12(2):. PubMed ID: 31991901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic analysis of sol-gel transition of gelatin in terms of water activity in various solutions.
    Miyawaki O; Omote C; Matsuhira K
    Biopolymers; 2015 Dec; 103(12):685-91. PubMed ID: 26215282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of sucrose on the sol-gel phase transition and viscoelastic properties of potato starch solutions.
    Owczarz P; Orczykowska M; Rył A; Ziółkowski P
    Food Chem; 2019 Jan; 271():94-101. PubMed ID: 30236747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gelatin vs polysaccharide in mixture with sugar.
    Kasapis S; Al-Marhoobi IM; Deszczynski M; Mitchell JR; Abeysekera R
    Biomacromolecules; 2003; 4(5):1142-9. PubMed ID: 12959577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pressure on the sol-gel transition of gelatin.
    Gekko K; Fukamizu M
    Int J Biol Macromol; 1991 Oct; 13(5):295-300. PubMed ID: 1801903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks.
    Bode F; da Silva MA; Drake AF; Ross-Murphy SB; Dreiss CA
    Biomacromolecules; 2011 Oct; 12(10):3741-52. PubMed ID: 21819136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.