BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8286752)

  • 1. Fragility and structure of hemoglobin S fibers and gels and their consequences for gelation kinetics and rheology.
    Briehl RW; Guzman AE
    Blood; 1994 Jan; 83(2):573-9. PubMed ID: 8286752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleation, fiber growth and melting, and domain formation and structure in sickle cell hemoglobin gels.
    Briehl RW
    J Mol Biol; 1995 Feb; 245(5):710-23. PubMed ID: 7844835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromechanics of isolated sickle cell hemoglobin fibers: bending moduli and persistence lengths.
    Wang JC; Turner MS; Agarwal G; Kwong S; Josephs R; Ferrone FA; Briehl RW
    J Mol Biol; 2002 Jan; 315(4):601-12. PubMed ID: 11812133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemoglobin S polymerization and gelation under shear II. The joint concentration and shear dependence of kinetics.
    Samuel RE; Guzman AE; Briehl RW
    Blood; 1993 Dec; 82(11):3474-81. PubMed ID: 8241514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of hemoglobin S polymerization and gelation under shear: I. Shape of the viscosity progress curve and dependence of delay time and reaction rate on shear rate and temperature.
    Briehl RW; Nikolopoulou P
    Blood; 1993 May; 81(9):2420-8. PubMed ID: 8481521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of shear on the delay time for gelation of hemoglobin S.
    Briehl RW
    Blood Cells; 1982; 8(2):201-12. PubMed ID: 7159745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheology of hemoglobin S gels: possible correlation with impaired microvascular circulation.
    Briehl RW
    Am J Pediatr Hematol Oncol; 1983; 5(4):390-8. PubMed ID: 6670719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-like behaviour of unsheared sickle haemoglobin gels and the effects of shear.
    Briehl RW
    Nature; 1980 Dec; 288(5791):622-4. PubMed ID: 7442810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sickle hemoglobin gelation. Reaction order and critical nucleus size.
    Behe MJ; Englander SW
    Biophys J; 1978 Jul; 23(1):129-45. PubMed ID: 667302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric control of hemoglobin S fiber formation by oxygen and its relation to the pathophysiology of sickle cell disease.
    Henry ER; Cellmer T; Dunkelberger EB; Metaferia B; Hofrichter J; Li Q; Ostrowski D; Ghirlando R; Louis JM; Moutereau S; Galactéros F; Thein SL; Bartolucci P; Eaton WA
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):15018-15027. PubMed ID: 32527859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between sickle hemoglobin fibers.
    Jones CW; Wang JC; Ferrone FA; Briehl RW; Turner MS
    Faraday Discuss; 2003; 123():221-36; discussion 303-22, 419-21. PubMed ID: 12638863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The kinetics of nucleation and growth of sickle cell hemoglobin fibers.
    Galkin O; Nagel RL; Vekilov PG
    J Mol Biol; 2007 Jan; 365(2):425-39. PubMed ID: 17069853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Length distributions of hemoglobin S fibers.
    Briehl RW; Mann ES; Josephs R
    J Mol Biol; 1990 Feb; 211(4):693-8. PubMed ID: 2313696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fiber depolymerization: fracture, fragments, vanishing times, and stochastics in sickle hemoglobin.
    Wang JC; Kwong S; Ferrone FA; Turner MS; Briehl RW
    Biophys J; 2009 Jan; 96(2):655-70. PubMed ID: 19167311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease.
    Hofrichter J; Ross PD; Eaton WA
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4864-8. PubMed ID: 4531026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the shape of sickled red cells.
    Christoph GW; Hofrichter J; Eaton WA
    Biophys J; 2005 Feb; 88(2):1371-6. PubMed ID: 15542552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delay time of hemoglobin S polymerization prevents most cells from sickling in vivo.
    Mozzarelli A; Hofrichter J; Eaton WA
    Science; 1987 Jul; 237(4814):500-6. PubMed ID: 3603036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and inefficient kinetics of sickle hemoglobin fiber growth.
    Castle BT; Odde DJ; Wood DK
    Sci Adv; 2019 Mar; 5(3):eaau1086. PubMed ID: 30891490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiber depolymerization.
    Turner MS; Agarwal G; Jones CW; Wang JC; Kwong S; Ferrone FA; Josephs R; Briehl RW
    Biophys J; 2006 Aug; 91(3):1008-13. PubMed ID: 16714344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleation and growth of fibres and gel formation in sickle cell haemoglobin.
    Samuel RE; Salmon ED; Briehl RW
    Nature; 1990 Jun; 345(6278):833-5. PubMed ID: 2359460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.