BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 8287134)

  • 1. Investigation of the metabolism of the neuroleptic drug haloperidol by capillary electrophoresis.
    Tomlinson AJ; Benson LM; Landers JP; Scanlan GF; Fang J; Gorrod JW; Naylor S
    J Chromatogr A; 1993 Oct; 652(2):417-26. PubMed ID: 8287134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the metabolic fate of the neuroleptic drug haloperidol by capillary electrophoresis-electrospray ionization mass spectrometry.
    Tomlinson AJ; Benson LM; Johnson KL; Naylor S
    J Chromatogr; 1993 Nov; 621(2):239-48. PubMed ID: 8294545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of drug metabolism using capillary electrophoresis with photodiode array detection and online mass spectrometry equipped with an array detector.
    Tomlinson AJ; Benson LM; Johnson KL; Naylor S
    Electrophoresis; 1994 Jan; 15(1):62-71. PubMed ID: 8143682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interconversions of haloperidol and reduced haloperidol in guinea pig and rat liver microsomes.
    Korpi ER; Costakos DT; Wyatt RJ
    Biochem Pharmacol; 1985 Aug; 34(16):2923-7. PubMed ID: 4026878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance liquid chromatographic method for the detection and quantitation of haloperidol and seven of its metabolites in microsomal preparations.
    Fang J; Gorrod JW
    J Chromatogr; 1993 May; 614(2):267-73. PubMed ID: 8314939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the in vitro metabolism of the H2-antagonist mifentidine by on-line capillary electrophoresis-mass spectrometry using non-aqueous separation conditions.
    Tomlinson AJ; Benson LM; Gorrod JW; Naylor S
    J Chromatogr B Biomed Appl; 1994 Jul; 657(2):373-81. PubMed ID: 7952102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-species variability of haplamine metabolism and identification of its phase I metabolites from liver microsomes.
    Ea S; Bun SS; Aubert C; Akhmedjanova V; Ollivier E; Siv C; Bun H
    Planta Med; 2006 Nov; 72(14):1273-8. PubMed ID: 16983601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species-dependent hepatic metabolism of immunosuppressive agent tacrolimus (FK-506).
    Tata PN; Subbotina N; Burckart GJ; Muddiman DC; Gusev AI; Hercules DM; Starzl TE; Venkataramanan R
    Xenobiotica; 2009 Oct; 39(10):757-65. PubMed ID: 19604035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free-solution capillary electrophoretic separation of small hydrophilic peptides.
    Zhang YK; Chen N; Wang L
    Biomed Chromatogr; 1993; 7(2):75-7. PubMed ID: 8485377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of free-solution capillary electrophoresis to the analytical scale separation of proteins and peptides.
    Grossman PD; Colburn JC; Lauer HH; Nielsen RG; Riggin RM; Sittampalam GS; Rickard EC
    Anal Chem; 1989 Jun; 61(11):1186-94. PubMed ID: 2757205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of carbadox metabolites formed by liver microsomes from rats, pigs and chickens using high-performance liquid chromatography combined with hybrid ion trap/time-of-flight mass spectrometry.
    Liu ZY; Tao YF; Chen DM; Wang X; Yuan ZH
    Rapid Commun Mass Spectrom; 2011 Jan; 25(2):341-8. PubMed ID: 21192029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haloperidol reductase in human and guinea pig livers.
    Inaba T; Kovacs J
    Drug Metab Dispos; 1989; 17(3):330-3. PubMed ID: 2568916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Species-related difference between limonin and obacunone among five liver microsomes and zebrafish using ultra-high-performance liquid chromatography coupled with a LTQ-Orbitrap mass spectrometer.
    Ren W; Li Y; Zuo R; Wang HJ; Si N; Zhao HY; Han LY; Yang J; Bian BL
    Rapid Commun Mass Spectrom; 2014 Nov; 28(21):2292-300. PubMed ID: 25279742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxylation of 4,4'-methylenebis(2-chloroaniline) by canine, guinea pig, and rat liver microsomes.
    Chen TH; Kuslikis BI; Braselton WE
    Drug Metab Dispos; 1989; 17(4):406-13. PubMed ID: 2571481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the conversion of haloperidol and its tetrahydropyridine dehydration product to potentially neurotoxic pyridinium metabolites by human liver microsomes.
    Usuki E; Pearce R; Parkinson A; Castagnol N
    Chem Res Toxicol; 1996 Jun; 9(4):800-6. PubMed ID: 8831826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of phenformin metabolism in rat liver microsomes by HPLC, CE and on-line HPLC-electrospray ionization mass spectrometry.
    Llambias EB; Luo J
    Biomed Chromatogr; 1996; 10(4):155-60. PubMed ID: 8831958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the new MDR-modifier PFP 6 and its metabolites in human liver microsomes by high-performance liquid chromatography.
    Spatzenegger M; Ecker G; Jäger W
    Biomed Chromatogr; 1996; 10(3):127-30. PubMed ID: 8792863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P450-catalyzed vs. electrochemical oxidation of haloperidol studied by ultra-performance liquid chromatography/electrospray ionization mass spectrometry.
    Mali'n TJ; Weidolf L; Castagnoli N; Jurva U
    Rapid Commun Mass Spectrom; 2010 May; 24(9):1231-40. PubMed ID: 20391593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the metabolism of haloperidol.
    Gorrod JW; Fang J
    Xenobiotica; 1993 May; 23(5):495-508. PubMed ID: 8342297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of phase I metabolites of 3-methylindole produced by pig liver microsomes.
    Diaz GJ; Skordos KW; Yost GS; Squires EJ
    Drug Metab Dispos; 1999 Oct; 27(10):1150-6. PubMed ID: 10497141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.