These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 8288286)
1. Analysis and optimization of waveguide multiapplicator hyperthermia systems. Boag A; Leviatan Y; Boag A IEEE Trans Biomed Eng; 1993 Sep; 40(9):946-52. PubMed ID: 8288286 [TBL] [Abstract][Full Text] [Related]
2. Optimization of the deposited power distribution inside a layered lossy medium irradiated by a coupled system of concentrically placed waveguide applicators. Nikita KS; Maratos NG; Uzunoglu NK IEEE Trans Biomed Eng; 1998 Jul; 45(7):909-20. PubMed ID: 9644900 [TBL] [Abstract][Full Text] [Related]
3. Optimal excitation of multiapplicator systems for deep regional hyperthermia. Boag A; Leviatan Y IEEE Trans Biomed Eng; 1990 Oct; 37(10):987-95. PubMed ID: 2249871 [TBL] [Abstract][Full Text] [Related]
4. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement. Clibbon KL; McCowen A; Hand JW IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284 [TBL] [Abstract][Full Text] [Related]
5. SAR optimization in a phased array radiofrequency hyperthermia system. Specific absorption rate. Bardati F; Borrani A; Gerardino A; Lovisolo GA IEEE Trans Biomed Eng; 1995 Dec; 42(12):1201-7. PubMed ID: 8550062 [TBL] [Abstract][Full Text] [Related]
6. Optimal steady-state temperature distribution for a phased array hyperthermia system. Nikita KS; Maratos NG; Uzunoglu NK IEEE Trans Biomed Eng; 1993 Dec; 40(12):1299-306. PubMed ID: 8125505 [TBL] [Abstract][Full Text] [Related]
7. Numerical optimization of 3-D SAR distributions in cylindrical models for electromagnetic hyperthermia. Chowdhury DQ; Hill SC IEEE Trans Biomed Eng; 1991 Dec; 38(12):1246-55. PubMed ID: 1774086 [TBL] [Abstract][Full Text] [Related]
8. Evanescent-mode applicators (EMA) for superficial and subcutaneous hyperthermia. Vrba J; Franconi C; Montecchia F; Vannucci I IEEE Trans Biomed Eng; 1993 May; 40(5):397-407. PubMed ID: 8225328 [TBL] [Abstract][Full Text] [Related]
9. Time-reversal focusing in microwave hyperthermia for deep-seated tumors. Trefná HD; Vrba J; Persson M Phys Med Biol; 2010 Apr; 55(8):2167-85. PubMed ID: 20348605 [TBL] [Abstract][Full Text] [Related]
10. [The possibilities of hyperthermia from an engineering standpoint]. Saitoh Y; Matsuda J; Kato K Gan To Kagaku Ryoho; 1989 Apr; 16(4 Pt 2-2):1425-31. PubMed ID: 2730047 [TBL] [Abstract][Full Text] [Related]
11. Comments on "Numerical simulation of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors". Hagmann MJ IEEE Trans Biomed Eng; 1992 Dec; 39(12):1322-4. PubMed ID: 1487298 [No Abstract] [Full Text] [Related]
12. Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays. Furse CM; Iskander MF IEEE Trans Biomed Eng; 1989 Oct; 36(10):977-86. PubMed ID: 2793198 [TBL] [Abstract][Full Text] [Related]
13. Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: a preclinical study. Crezee J; Van Haaren PM; Westendorp H; De Greef M; Kok HP; Wiersma J; Van Stam G; Sijbrands J; Zum Vörde Sive Vörding P; Van Dijk JD; Hulshof MC; Bel A Int J Hyperthermia; 2009 Nov; 25(7):581-92. PubMed ID: 19848620 [TBL] [Abstract][Full Text] [Related]
14. Localized heating characteristics of hyperthermia using a reentrant cavity. Ishihara Y; Wadamori N J Med Eng Technol; 2008; 32(5):348-57. PubMed ID: 18821413 [TBL] [Abstract][Full Text] [Related]
15. [The simulation of SAR and temperature distribution and parameters analysis for tumor RF thermotherapy]. Zhao Z; Li F Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Oct; 22(5):901-5. PubMed ID: 16294717 [TBL] [Abstract][Full Text] [Related]
16. An inverse method to optimize heating conditions in RF-capacitive hyperthermia. Tsuda N; Kuroda K; Suzuki Y IEEE Trans Biomed Eng; 1996 Oct; 43(10):1029-37. PubMed ID: 9214820 [TBL] [Abstract][Full Text] [Related]
17. Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer. Kok HP; van Haaren PM; van de Kamer JB; Zum Vörde Sive Vörding PJ; Wiersma J; Hulshof MC; Geijsen ED; van Lanschot JJ; Crezee J Int J Hyperthermia; 2006 Aug; 22(5):375-89. PubMed ID: 16891240 [TBL] [Abstract][Full Text] [Related]
18. A 3-D SAR model for current source interstitial hyperthermia. de Bree J; van der Koijk JF; Lagendijk JJ IEEE Trans Biomed Eng; 1996 Oct; 43(10):1038-45. PubMed ID: 9214821 [TBL] [Abstract][Full Text] [Related]
19. An ultrasound cylindrical phased array for deep heating in the breast: theoretical design using heterogeneous models. Bakker JF; Paulides MM; Obdeijn IM; van Rhoon GC; van Dongen KW Phys Med Biol; 2009 May; 54(10):3201-15. PubMed ID: 19420416 [TBL] [Abstract][Full Text] [Related]
20. The design and characterization of an ultrasound phased array suitable for deep tissue hyperthermia. Aitkenhead AH; Mills JA; Wilson AJ Ultrasound Med Biol; 2008 Nov; 34(11):1793-807. PubMed ID: 18571831 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]