BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8288286)

  • 1. Analysis and optimization of waveguide multiapplicator hyperthermia systems.
    Boag A; Leviatan Y; Boag A
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):946-52. PubMed ID: 8288286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the deposited power distribution inside a layered lossy medium irradiated by a coupled system of concentrically placed waveguide applicators.
    Nikita KS; Maratos NG; Uzunoglu NK
    IEEE Trans Biomed Eng; 1998 Jul; 45(7):909-20. PubMed ID: 9644900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal excitation of multiapplicator systems for deep regional hyperthermia.
    Boag A; Leviatan Y
    IEEE Trans Biomed Eng; 1990 Oct; 37(10):987-95. PubMed ID: 2249871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement.
    Clibbon KL; McCowen A; Hand JW
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SAR optimization in a phased array radiofrequency hyperthermia system. Specific absorption rate.
    Bardati F; Borrani A; Gerardino A; Lovisolo GA
    IEEE Trans Biomed Eng; 1995 Dec; 42(12):1201-7. PubMed ID: 8550062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal steady-state temperature distribution for a phased array hyperthermia system.
    Nikita KS; Maratos NG; Uzunoglu NK
    IEEE Trans Biomed Eng; 1993 Dec; 40(12):1299-306. PubMed ID: 8125505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical optimization of 3-D SAR distributions in cylindrical models for electromagnetic hyperthermia.
    Chowdhury DQ; Hill SC
    IEEE Trans Biomed Eng; 1991 Dec; 38(12):1246-55. PubMed ID: 1774086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evanescent-mode applicators (EMA) for superficial and subcutaneous hyperthermia.
    Vrba J; Franconi C; Montecchia F; Vannucci I
    IEEE Trans Biomed Eng; 1993 May; 40(5):397-407. PubMed ID: 8225328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-reversal focusing in microwave hyperthermia for deep-seated tumors.
    Trefná HD; Vrba J; Persson M
    Phys Med Biol; 2010 Apr; 55(8):2167-85. PubMed ID: 20348605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The possibilities of hyperthermia from an engineering standpoint].
    Saitoh Y; Matsuda J; Kato K
    Gan To Kagaku Ryoho; 1989 Apr; 16(4 Pt 2-2):1425-31. PubMed ID: 2730047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comments on "Numerical simulation of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors".
    Hagmann MJ
    IEEE Trans Biomed Eng; 1992 Dec; 39(12):1322-4. PubMed ID: 1487298
    [No Abstract]   [Full Text] [Related]  

  • 12. Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays.
    Furse CM; Iskander MF
    IEEE Trans Biomed Eng; 1989 Oct; 36(10):977-86. PubMed ID: 2793198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: a preclinical study.
    Crezee J; Van Haaren PM; Westendorp H; De Greef M; Kok HP; Wiersma J; Van Stam G; Sijbrands J; Zum Vörde Sive Vörding P; Van Dijk JD; Hulshof MC; Bel A
    Int J Hyperthermia; 2009 Nov; 25(7):581-92. PubMed ID: 19848620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized heating characteristics of hyperthermia using a reentrant cavity.
    Ishihara Y; Wadamori N
    J Med Eng Technol; 2008; 32(5):348-57. PubMed ID: 18821413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The simulation of SAR and temperature distribution and parameters analysis for tumor RF thermotherapy].
    Zhao Z; Li F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Oct; 22(5):901-5. PubMed ID: 16294717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An inverse method to optimize heating conditions in RF-capacitive hyperthermia.
    Tsuda N; Kuroda K; Suzuki Y
    IEEE Trans Biomed Eng; 1996 Oct; 43(10):1029-37. PubMed ID: 9214820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer.
    Kok HP; van Haaren PM; van de Kamer JB; Zum Vörde Sive Vörding PJ; Wiersma J; Hulshof MC; Geijsen ED; van Lanschot JJ; Crezee J
    Int J Hyperthermia; 2006 Aug; 22(5):375-89. PubMed ID: 16891240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3-D SAR model for current source interstitial hyperthermia.
    de Bree J; van der Koijk JF; Lagendijk JJ
    IEEE Trans Biomed Eng; 1996 Oct; 43(10):1038-45. PubMed ID: 9214821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ultrasound cylindrical phased array for deep heating in the breast: theoretical design using heterogeneous models.
    Bakker JF; Paulides MM; Obdeijn IM; van Rhoon GC; van Dongen KW
    Phys Med Biol; 2009 May; 54(10):3201-15. PubMed ID: 19420416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The design and characterization of an ultrasound phased array suitable for deep tissue hyperthermia.
    Aitkenhead AH; Mills JA; Wilson AJ
    Ultrasound Med Biol; 2008 Nov; 34(11):1793-807. PubMed ID: 18571831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.