These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 8289191)
1. Design and synthesis of bifunctional isothiocyanate analogs of sulforaphane: correlation between structure and potency as inducers of anticarcinogenic detoxication enzymes. Posner GH; Cho CG; Green JV; Zhang Y; Talalay P J Med Chem; 1994 Jan; 37(1):170-6. PubMed ID: 8289191 [TBL] [Abstract][Full Text] [Related]
2. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Zhang Y; Talalay P; Cho CG; Posner GH Proc Natl Acad Sci U S A; 1992 Mar; 89(6):2399-403. PubMed ID: 1549603 [TBL] [Abstract][Full Text] [Related]
3. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Zhang Y; Kensler TW; Cho CG; Posner GH; Talalay P Proc Natl Acad Sci U S A; 1994 Apr; 91(8):3147-50. PubMed ID: 8159717 [TBL] [Abstract][Full Text] [Related]
4. The natural chemopreventive phytochemical R-sulforaphane is a far more potent inducer of the carcinogen-detoxifying enzyme systems in rat liver and lung than the S-isomer. Abdull Razis AF; Iori R; Ioannides C Int J Cancer; 2011 Jun; 128(12):2775-82. PubMed ID: 20726001 [TBL] [Abstract][Full Text] [Related]
5. Cancer chemopreventive potential of sulforamate, a novel analogue of sulforaphane that induces phase 2 drug-metabolizing enzymes. Gerhäuser C; You M; Liu J; Moriarty RM; Hawthorne M; Mehta RG; Moon RC; Pezzuto JM Cancer Res; 1997 Jan; 57(2):272-8. PubMed ID: 9000567 [TBL] [Abstract][Full Text] [Related]
6. Regulatory mechanisms of monofunctional and bifunctional anticarcinogenic enzyme inducers in murine liver. Prochaska HJ; Talalay P Cancer Res; 1988 Sep; 48(17):4776-82. PubMed ID: 3409219 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of differential potencies of isothiocyanates as inducers of anticarcinogenic Phase 2 enzymes. Zhang Y; Talalay P Cancer Res; 1998 Oct; 58(20):4632-9. PubMed ID: 9788615 [TBL] [Abstract][Full Text] [Related]
8. The potency of inducers of NAD(P)H:(quinone-acceptor) oxidoreductase parallels their efficiency as substrates for glutathione transferases. Structural and electronic correlations. Spencer SR; Xue LA; Klenz EM; Talalay P Biochem J; 1991 Feb; 273 ( Pt 3)(Pt 3):711-7. PubMed ID: 1900000 [TBL] [Abstract][Full Text] [Related]
9. Induction of glutathione transferases and NAD(P)H:quinone reductase by fumaric acid derivatives in rodent cells and tissues. Spencer SR; Wilczak CA; Talalay P Cancer Res; 1990 Dec; 50(24):7871-5. PubMed ID: 2123743 [TBL] [Abstract][Full Text] [Related]
10. The cruciferous nitrile crambene has bioactivity similar to sulforaphane when administered to Fischer 344 rats but is far less potent in cell culture. Keck AS; Staack R; Jeffery EH Nutr Cancer; 2002; 42(2):233-40. PubMed ID: 12416265 [TBL] [Abstract][Full Text] [Related]
11. Cancer chemopreventive activity of sulforamate derivatives. Moriarty RM; Naithani R; Kosmeder J; Prakash O Eur J Med Chem; 2006 Jan; 41(1):121-4. PubMed ID: 16300858 [TBL] [Abstract][Full Text] [Related]
12. Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Brooks JD; Paton VG; Vidanes G Cancer Epidemiol Biomarkers Prev; 2001 Sep; 10(9):949-54. PubMed ID: 11535546 [TBL] [Abstract][Full Text] [Related]
13. Electrophilic tuning of the chemoprotective natural product sulforaphane. Ahn YH; Hwang Y; Liu H; Wang XJ; Zhang Y; Stephenson KK; Boronina TN; Cole RN; Dinkova-Kostova AT; Talalay P; Cole PA Proc Natl Acad Sci U S A; 2010 May; 107(21):9590-5. PubMed ID: 20439747 [TBL] [Abstract][Full Text] [Related]
14. Selective increase of the potential anticarcinogen 4-methylsulphinylbutyl glucosinolate in broccoli. Faulkner K; Mithen R; Williamson G Carcinogenesis; 1998 Apr; 19(4):605-9. PubMed ID: 9600344 [TBL] [Abstract][Full Text] [Related]
15. Total intracellular accumulation levels of dietary isothiocyanates determine their activity in elevation of cellular glutathione and induction of Phase 2 detoxification enzymes. Ye L; Zhang Y Carcinogenesis; 2001 Dec; 22(12):1987-92. PubMed ID: 11751429 [TBL] [Abstract][Full Text] [Related]
16. Chemoprotective properties of phenylpropenoids, bis(benzylidene)cycloalkanones, and related Michael reaction acceptors: correlation of potencies as phase 2 enzyme inducers and radical scavengers. Dinkova-Kostova AT; Abeygunawardana C; Talalay P J Med Chem; 1998 Dec; 41(26):5287-96. PubMed ID: 9857096 [TBL] [Abstract][Full Text] [Related]
17. A sulforaphane analogue that potently activates the Nrf2-dependent detoxification pathway. Morimitsu Y; Nakagawa Y; Hayashi K; Fujii H; Kumagai T; Nakamura Y; Osawa T; Horio F; Itoh K; Iida K; Yamamoto M; Uchida K J Biol Chem; 2002 Feb; 277(5):3456-63. PubMed ID: 11706044 [TBL] [Abstract][Full Text] [Related]
18. Induction of phase II detoxification enzymes in rats by plant-derived isothiocyanates: comparison of allyl isothiocyanate with sulforaphane and related compounds. Munday R; Munday CM J Agric Food Chem; 2004 Apr; 52(7):1867-71. PubMed ID: 15053522 [TBL] [Abstract][Full Text] [Related]
19. Identification of potential prostate cancer preventive agents through induction of quinone reductase in vitro. Brooks JD; Goldberg MF; Nelson LA; Wu D; Nelson WG Cancer Epidemiol Biomarkers Prev; 2002 Sep; 11(9):868-75. PubMed ID: 12223431 [TBL] [Abstract][Full Text] [Related]
20. Induction of quinone reductase by sulforaphane and sulforaphane N-acetylcysteine conjugate in murine hepatoma cells. Hwang ES; Jeffery EH J Med Food; 2005; 8(2):198-203. PubMed ID: 16117612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]