These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8289240)

  • 21. Influence of DNA sequence on the formation of non-B right-handed helices in oligopurine.oligopyrimidine inserts in plasmids.
    Hanvey JC; Klysik J; Wells RD
    J Biol Chem; 1988 May; 263(15):7386-96. PubMed ID: 2835375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation of a combined H-DNA/open TATA box structure in the promoter sequence of the human Na,K-ATPase alpha2 gene.
    Potaman VN; Ussery DW; Sinden RR
    J Biol Chem; 1996 Jun; 271(23):13441-7. PubMed ID: 8662935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The structure of the guanine-rich polypurine:polypyrimidine sequence at the right end of the rat L1 (LINE) element.
    Usdin K; Furano AV
    J Biol Chem; 1989 Sep; 264(26):15681-7. PubMed ID: 2768282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calorimetric analysis of triple helices targeted to the d(G3A4G3).d(C3T4C3) duplex.
    Scaria PV; Shafer RH
    Biochemistry; 1996 Aug; 35(33):10985-94. PubMed ID: 8718892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cruciform extrusion facilitates intramolecular triplex formation between distal oligopurine.oligopyrimidine tracts: long range effects.
    Klysik J
    J Biol Chem; 1992 Aug; 267(24):17430-7. PubMed ID: 1512273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Left-handed Z-DNA and intramolecular triplex formation at the site of an unequal sister chromatid exchange.
    Weinreb A; Collier DA; Birshtein BK; Wells RD
    J Biol Chem; 1990 Jan; 265(3):1352-9. PubMed ID: 2104839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intramolecular DNA triplexes in supercoiled plasmids.
    Hanvey JC; Shimizu M; Wells RD
    Proc Natl Acad Sci U S A; 1988 Sep; 85(17):6292-6. PubMed ID: 3413097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix.
    Pilch DS; Levenson C; Shafer RH
    Biochemistry; 1991 Jun; 30(25):6081-8. PubMed ID: 2059618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protection of DNA sequences by triplex-bridge formation.
    Kiyama R; Oishi M
    Nucleic Acids Res; 1995 Feb; 23(3):452-8. PubMed ID: 7885840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmid dimerization mediated by triplex formation between polypyrimidine-polypurine repeats.
    Hampel KJ; Burkholder GD; Lee JS
    Biochemistry; 1993 Feb; 32(4):1072-7. PubMed ID: 8424937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stabilization of PyPuPu triplexes with bivalent cations.
    Frank-Kamenetskii MD; Malkov VA; Voloshin ON; Soyfer VN
    Nucleic Acids Symp Ser; 1991; (24):159-62. PubMed ID: 1841273
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parallel-stranded DNA under topological stress: rearrangement of (dA)15.(dT)15 to a d(A.A.T)n triplex.
    Klysik J; Rippe K; Jovin TM
    Nucleic Acids Res; 1991 Dec; 19(25):7145-54. PubMed ID: 1766874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif.
    Marfurt J; Parel SP; Leumann CJ
    Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of a G.T.A triplet in an intramolecular DNA triplex.
    Wang E; Malek S; Feigon J
    Biochemistry; 1992 May; 31(20):4838-46. PubMed ID: 1591244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Triplex formation by a psoralen-conjugated oligodeoxyribonucleotide containing the base analog 8-oxo-adenine.
    Miller PS; Bi G; Kipp SA; Fok V; DeLong RK
    Nucleic Acids Res; 1996 Feb; 24(4):730-6. PubMed ID: 8604317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequence limitations of triple helix formation by alternate-strand recognition.
    Jayasena SD; Johnston BH
    Biochemistry; 1993 Mar; 32(11):2800-7. PubMed ID: 8384479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photofootprinting of DNA triplexes.
    Lyamichev VI; Voloshin ON; Frank-Kamenetskii MD; Soyfer VN
    Nucleic Acids Res; 1991 Apr; 19(7):1633-8. PubMed ID: 2027771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bulge defects in intramolecular pyrimidine.purine.pyrimidine DNA triplexes in solution.
    Wang Y; Patel DJ
    Biochemistry; 1995 Apr; 34(16):5696-704. PubMed ID: 7727429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and mechanism of formation of the H-y5 isomer of an intramolecular DNA triple helix.
    van Dongen MJ; Doreleijers JF; van der Marel GA; van Boom JH; Hilbers CW; Wijmenga SS
    Nat Struct Biol; 1999 Sep; 6(9):854-9. PubMed ID: 10467098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.