These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8289267)

  • 1. Vertebrate (chick) collagen fibrils formed in vivo can exhibit a reversal in molecular polarity.
    Holmes DF; Lowe MP; Chapman JA
    J Mol Biol; 1994 Jan; 235(1):80-3. PubMed ID: 8289267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen fibrils forming in developing tendon show an early and abrupt limitation in diameter at the growing tips.
    Holmes DF; Graham HK; Kadler KE
    J Mol Biol; 1998 Nov; 283(5):1049-58. PubMed ID: 9799643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction.
    Graham HK; Holmes DF; Watson RB; Kadler KE
    J Mol Biol; 2000 Jan; 295(4):891-902. PubMed ID: 10656798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotary shadowing of collagen monomers, oligomers, and fibrils during tendon fibrillogenesis.
    Fleischmajer R; Perlish JS; Faraggiana T
    J Histochem Cytochem; 1991 Jan; 39(1):51-8. PubMed ID: 1983873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collagen fibril formation.
    Kadler KE; Holmes DF; Trotter JA; Chapman JA
    Biochem J; 1996 May; 316 ( Pt 1)(Pt 1):1-11. PubMed ID: 8645190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of sea cucumber collagen fibrils occurs at the tips and centers in a coordinated manner.
    Trotter JA; Chapman JA; Kadler KE; Holmes DF
    J Mol Biol; 1998 Dec; 284(5):1417-24. PubMed ID: 9878360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures.
    Birk DE; Zycband EI; Woodruff S; Winkelmann DA; Trelstad RL
    Dev Dyn; 1997 Mar; 208(3):291-8. PubMed ID: 9056634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STEM/TEM studies of collagen fibril assembly.
    Holmes DF; Graham HK; Trotter JA; Kadler KE
    Micron; 2001 Apr; 32(3):273-85. PubMed ID: 11006507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography.
    Landis WJ; Hodgens KJ; Arena J; Song MJ; McEwen BF
    Microsc Res Tech; 1996 Feb; 33(2):192-202. PubMed ID: 8845518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Native collagen fibrils from echinoderms are molecularly bipolar.
    Thurmond FA; Trotter JA
    J Mol Biol; 1994 Jan; 235(1):73-9. PubMed ID: 8289266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of a discrete axial structure in unimodal collagen fibrils.
    Raspanti M; Reguzzoni M; Protasoni M; Martini D
    Biomacromolecules; 2011 Dec; 12(12):4344-7. PubMed ID: 22066528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of rotary shadowing electron microscopy to investigate the collagen fibrils in the extracellular matrix of cuttle-fish (Sepia officinalis) and chicken cartilage.
    Rigo C; Bairati A
    Tissue Cell; 1998 Feb; 30(1):112-7. PubMed ID: 9569684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using transmission electron microscopy and 3View to determine collagen fibril size and three-dimensional organization.
    Starborg T; Kalson NS; Lu Y; Mironov A; Cootes TF; Holmes DF; Kadler KE
    Nat Protoc; 2013; 8(7):1433-48. PubMed ID: 23807286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of intact collagen fibrils from healing ligament.
    deVente JE; Lester GE; Trotter JA; Dahners LE
    J Electron Microsc (Tokyo); 1997; 46(4):353-6. PubMed ID: 9345777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symmetrically banded collagen fibrils: observations on a new cross striation pattern in vivo.
    Mallinger R; Kulnig W; Böck P
    Anat Rec; 1992 Jan; 232(1):45-51. PubMed ID: 1536464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Echinoderm collagen fibrils grow by surface-nucleation-and-propagation from both centers and ends.
    Trotter JA; Kadler KE; Holmes DF
    J Mol Biol; 2000 Jul; 300(3):531-40. PubMed ID: 10884349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron microscope 3D reconstruction of branched collagen fibrils in vivo.
    Starborg T; Lu Y; Huffman A; Holmes DF; Kadler KE
    Scand J Med Sci Sports; 2009 Aug; 19(4):547-52. PubMed ID: 19422644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly in vitro of thin and thick fibrils of collagen II from recombinant procollagen II. The monomers in the tips of thick fibrils have the opposite orientation from monomers in the growing tips of collagen I fibrils.
    Fertala A; Holmes DF; Kadler KE; Sieron AL; Prockop DJ
    J Biol Chem; 1996 Jun; 271(25):14864-9. PubMed ID: 8662997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of collagen fibril seeds from embryonic tendon: fractured fibril ends nucleate new tip growth.
    Holmes DF; Tait A; Hodson NW; Sherratt MJ; Kadler KE
    J Mol Biol; 2010 May; 399(1):9-16. PubMed ID: 20385142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.