BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 8289287)

  • 1. High-resolution crystallographic analysis of a co-operative dimeric hemoglobin.
    Royer WE
    J Mol Biol; 1994 Jan; 235(2):657-81. PubMed ID: 8289287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational destabilization of the critical interface water cluster in Scapharca dimeric hemoglobin: structural basis for altered allosteric activity.
    Pardanani A; Gambacurta A; Ascoli F; Royer WE
    J Mol Biol; 1998 Dec; 284(3):729-39. PubMed ID: 9826511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 1.9 A structure of deoxy beta 4 hemoglobin. Analysis of the partitioning of quaternary-associated and ligand-induced changes in tertiary structure.
    Borgstahl GE; Rogers PH; Arnone A
    J Mol Biol; 1994 Feb; 236(3):831-43. PubMed ID: 8114097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single mutation (Thr72-->Ile) at the subunit interface is crucial for the functional properties of the homodimeric co-operative haemoglobin from Scapharca inaequivalvis.
    Gambacurta A; Piro MC; Coletta M; Clementi ME; Polizio F; Desideri A; Santucci R; Ascoli F
    J Mol Biol; 1995 May; 248(5):910-7. PubMed ID: 7760332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residue F4 plays a key role in modulating oxygen affinity and cooperativity in Scapharca dimeric hemoglobin.
    Knapp JE; Bonham MA; Gibson QH; Nichols JC; Royer WE
    Biochemistry; 2005 Nov; 44(44):14419-30. PubMed ID: 16262242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallographic evidence for a new ensemble of ligand-induced allosteric transitions in hemoglobin: the T-to-T(high) quaternary transitions.
    Kavanaugh JS; Rogers PH; Arnone A
    Biochemistry; 2005 Apr; 44(16):6101-21. PubMed ID: 15835899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-linked structural transitions in crystals of a cooperative dimeric hemoglobin.
    Knapp JE; Royer WE
    Biochemistry; 2003 Apr; 42(16):4640-7. PubMed ID: 12705827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A possible allosteric communication pathway identified through a resonance Raman study of four beta37 mutants of human hemoglobin A.
    Peterson ES; Friedman JM
    Biochemistry; 1998 Mar; 37(13):4346-57. PubMed ID: 9521755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of bar-headed goose hemoglobin in deoxy form: the allosteric mechanism of a hemoglobin species with high oxygen affinity.
    Liang Y; Hua Z; Liang X; Xu Q; Lu G
    J Mol Biol; 2001 Oct; 313(1):123-37. PubMed ID: 11601851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution crystal structure of magnesium (MgII)-iron (FeII) hybrid hemoglobin with liganded beta subunits.
    Park SY; Nakagawa A; Morimoto H
    J Mol Biol; 1996 Feb; 255(5):726-34. PubMed ID: 8636974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary structure of Noetia ponderosa hemoglobins: functional correlates.
    Nagel RL; Shi Y; Le N; Nieves E; Tang X; Hirsch RE; Angeletti RH
    Blood Cells Mol Dis; 2000 Oct; 26(5):437-44. PubMed ID: 11112381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycera dibranchiata hemoglobin. X-ray structure of carbonmonoxide hemoglobin at 1.5 A resolution.
    Braden BC; Arents G; Padlan EA; Love WE
    J Mol Biol; 1994 Apr; 238(1):42-53. PubMed ID: 8145255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure of horse deoxyhaemoglobin trapped in the high-affinity (R) state.
    Wilson J; Phillips K; Luisi B
    J Mol Biol; 1996 Dec; 264(4):743-56. PubMed ID: 8980683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the sulfide-reactive hemoglobin from the clam Lucina pectinata. Crystallographic analysis at 1.5 A resolution.
    Rizzi M; Wittenberg JB; Coda A; Fasano M; Ascenzi P; Bolognesi M
    J Mol Biol; 1994 Nov; 244(1):86-99. PubMed ID: 7966324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the liganded T state of haemoglobin identifies the origin of cooperative oxygen binding.
    Liddington R; Derewenda Z; Dodson G; Harris D
    Nature; 1988 Feb; 331(6158):725-8. PubMed ID: 3344047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel low oxygen affinity recombinant hemoglobin (alpha96val--> Trp): switching quaternary structure without changing the ligation state.
    Kim HW; Shen TJ; Sun DP; Ho NT; Madrid M; Ho C
    J Mol Biol; 1995 May; 248(4):867-82. PubMed ID: 7752247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnesium(II) and zinc(II)-protoporphyrin IX's stabilize the lowest oxygen affinity state of human hemoglobin even more strongly than deoxyheme.
    Miyazaki G; Morimoto H; Yun KM; Park SY; Nakagawa A; Minagawa H; Shibayama N
    J Mol Biol; 1999 Oct; 292(5):1121-36. PubMed ID: 10512707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of relaxed-state human hemoglobin: insight into ligand uptake, transport and release.
    Jenkins JD; Musayev FN; Danso-Danquah R; Abraham DJ; Safo MK
    Acta Crystallogr D Biol Crystallogr; 2009 Jan; 65(Pt 1):41-8. PubMed ID: 19153465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the partially unliganded met state of 400 kDa hemoglobin: insights into ligand-induced structural changes of giant hemoglobins.
    Numoto N; Nakagawa T; Kita A; Sasayama Y; Fukumori Y; Miki K
    Proteins; 2008 Oct; 73(1):113-25. PubMed ID: 18398907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation of residue Phe97 to Leu disrupts the central allosteric pathway in Scapharca dimeric hemoglobin.
    Pardanani A; Gibson QH; Colotti G; Royer WE
    J Biol Chem; 1997 May; 272(20):13171-9. PubMed ID: 9148933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.