These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
58 related articles for article (PubMed ID: 8289320)
1. Heterocyst-forming filamentous cyanobacteria encode proteins that resemble eukaryotic RNA-binding proteins of the RNP family. Mulligan ME; Jackman DM; Murphy ST J Mol Biol; 1994 Jan; 235(3):1162-70. PubMed ID: 8289320 [TBL] [Abstract][Full Text] [Related]
2. Characterization of RNA-binding protein genes in cyanobacteria. Mulligan ME; Belbin TJ Nucleic Acids Symp Ser; 1995; (33):140-2. PubMed ID: 8643351 [TBL] [Abstract][Full Text] [Related]
3. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943 [TBL] [Abstract][Full Text] [Related]
4. Cloning and mapping of a human RBP56 gene encoding a putative RNA binding protein similar to FUS/TLS and EWS proteins. Morohoshi F; Arai K; Takahashi EI; Tanigami A; Ohki M Genomics; 1996 Nov; 38(1):51-7. PubMed ID: 8954779 [TBL] [Abstract][Full Text] [Related]
5. Conservation of structure and cold-regulation of RNA-binding proteins in cyanobacteria: probable convergent evolution with eukaryotic glycine-rich RNA-binding proteins. Maruyama K; Sato N; Ohta N Nucleic Acids Res; 1999 May; 27(9):2029-36. PubMed ID: 10198437 [TBL] [Abstract][Full Text] [Related]
6. Characterization of RNA-binding properties of three types of RNA-binding proteins in Anabaena sp. PPC 7120. Hamano T; Murakami S; Takayama K; Ehira S; Maruyama K; Kawakami H; Morita EH; Hayashi H; Sato N Cell Mol Biol (Noisy-le-grand); 2004 Jul; 50(5):613-24. PubMed ID: 15559978 [TBL] [Abstract][Full Text] [Related]
7. Molecular cloning and subcellular localisation of the snRNP-associated protein 69KD, a structural homologue of the proto-oncoproteins TLS and EWS with RNA and DNA-binding properties. Hackl W; Lührmann R J Mol Biol; 1996 Dec; 264(5):843-51. PubMed ID: 9000615 [TBL] [Abstract][Full Text] [Related]
8. A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Funk C; Vermaas W Biochemistry; 1999 Jul; 38(29):9397-404. PubMed ID: 10413515 [TBL] [Abstract][Full Text] [Related]
9. The existence of eukaryotic ribonucleoprotein consensus sequence-type RNA-binding proteins in a prokaryote, Synechococcus 6301. Sugita M; Sugiura M Nucleic Acids Res; 1994 Jan; 22(1):25-31. PubMed ID: 7510387 [TBL] [Abstract][Full Text] [Related]
10. hnRNP A1 selectively interacts through its Gly-rich domain with different RNA-binding proteins. Cartegni L; Maconi M; Morandi E; Cobianchi F; Riva S; Biamonti G J Mol Biol; 1996 Jun; 259(3):337-48. PubMed ID: 8676373 [TBL] [Abstract][Full Text] [Related]
11. hTAF(II)68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. Bertolotti A; Lutz Y; Heard DJ; Chambon P; Tora L EMBO J; 1996 Sep; 15(18):5022-31. PubMed ID: 8890175 [TBL] [Abstract][Full Text] [Related]
12. Mutational analysis and secondary structure model of the RNP1-like sequence motif of transcription termination factor Rho. Martinez A; Opperman T; Richardson JP J Mol Biol; 1996 Apr; 257(5):895-908. PubMed ID: 8632473 [TBL] [Abstract][Full Text] [Related]
13. RNP-T, a ribonucleoprotein from Arabidopsis thaliana, contains two RNP-80 motifs and a novel acidic repeat arranged in an alpha-helix conformation. Bar-Zvi D; Shagan T; Schindler U; Cashmore AR Plant Mol Biol; 1992 Dec; 20(5):833-8. PubMed ID: 1463823 [TBL] [Abstract][Full Text] [Related]
14. Isolation of RRM-type RNA-binding protein genes and the analysis of their relatedness by using a numerical approach. Kim YJ; Baker BS Mol Cell Biol; 1993 Jan; 13(1):174-83. PubMed ID: 8417324 [TBL] [Abstract][Full Text] [Related]
15. Distribution of heterocyst glycolipids in cyanobacteria. Bauersachs T; Compaoré J; Hopmans EC; Stal LJ; Schouten S; Sinninghe Damsté JS Phytochemistry; 2009 Dec; 70(17-18):2034-9. PubMed ID: 19772975 [TBL] [Abstract][Full Text] [Related]
16. Conserved temperature-dependent expression of RNA-binding proteins in cyanobacteria with different temperature optima. Ehira S; Hamano T; Hayashida T; Kojima K; Nakamoto H; Hiyama T; Ohmori M; Shivaji S; Sato N FEMS Microbiol Lett; 2003 Aug; 225(1):137-42. PubMed ID: 12900032 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria. Cui H; Wang Y; Wang Y; Qin S BMC Evol Biol; 2012 Nov; 12():220. PubMed ID: 23157370 [TBL] [Abstract][Full Text] [Related]
18. Surveying DNA Elements within Functional Genes of Heterocyst-Forming Cyanobacteria. Hilton JA; Meeks JC; Zehr JP PLoS One; 2016; 11(5):e0156034. PubMed ID: 27206019 [TBL] [Abstract][Full Text] [Related]
19. RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Landsman D Nucleic Acids Res; 1992 Jun; 20(11):2861-4. PubMed ID: 1614871 [TBL] [Abstract][Full Text] [Related]
20. The RNP domain: a sequence-specific RNA-binding domain involved in processing and transport of RNA. Nagai K; Oubridge C; Ito N; Avis J; Evans P Trends Biochem Sci; 1995 Jun; 20(6):235-40. PubMed ID: 7543225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]