BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 8289320)

  • 1. Heterocyst-forming filamentous cyanobacteria encode proteins that resemble eukaryotic RNA-binding proteins of the RNP family.
    Mulligan ME; Jackman DM; Murphy ST
    J Mol Biol; 1994 Jan; 235(3):1162-70. PubMed ID: 8289320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of RNA-binding protein genes in cyanobacteria.
    Mulligan ME; Belbin TJ
    Nucleic Acids Symp Ser; 1995; (33):140-2. PubMed ID: 8643351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor.
    Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T
    Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and mapping of a human RBP56 gene encoding a putative RNA binding protein similar to FUS/TLS and EWS proteins.
    Morohoshi F; Arai K; Takahashi EI; Tanigami A; Ohki M
    Genomics; 1996 Nov; 38(1):51-7. PubMed ID: 8954779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conservation of structure and cold-regulation of RNA-binding proteins in cyanobacteria: probable convergent evolution with eukaryotic glycine-rich RNA-binding proteins.
    Maruyama K; Sato N; Ohta N
    Nucleic Acids Res; 1999 May; 27(9):2029-36. PubMed ID: 10198437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of RNA-binding properties of three types of RNA-binding proteins in Anabaena sp. PPC 7120.
    Hamano T; Murakami S; Takayama K; Ehira S; Maruyama K; Kawakami H; Morita EH; Hayashi H; Sato N
    Cell Mol Biol (Noisy-le-grand); 2004 Jul; 50(5):613-24. PubMed ID: 15559978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning and subcellular localisation of the snRNP-associated protein 69KD, a structural homologue of the proto-oncoproteins TLS and EWS with RNA and DNA-binding properties.
    Hackl W; Lührmann R
    J Mol Biol; 1996 Dec; 264(5):843-51. PubMed ID: 9000615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants.
    Funk C; Vermaas W
    Biochemistry; 1999 Jul; 38(29):9397-404. PubMed ID: 10413515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The existence of eukaryotic ribonucleoprotein consensus sequence-type RNA-binding proteins in a prokaryote, Synechococcus 6301.
    Sugita M; Sugiura M
    Nucleic Acids Res; 1994 Jan; 22(1):25-31. PubMed ID: 7510387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. hnRNP A1 selectively interacts through its Gly-rich domain with different RNA-binding proteins.
    Cartegni L; Maconi M; Morandi E; Cobianchi F; Riva S; Biamonti G
    J Mol Biol; 1996 Jun; 259(3):337-48. PubMed ID: 8676373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. hTAF(II)68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II.
    Bertolotti A; Lutz Y; Heard DJ; Chambon P; Tora L
    EMBO J; 1996 Sep; 15(18):5022-31. PubMed ID: 8890175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational analysis and secondary structure model of the RNP1-like sequence motif of transcription termination factor Rho.
    Martinez A; Opperman T; Richardson JP
    J Mol Biol; 1996 Apr; 257(5):895-908. PubMed ID: 8632473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNP-T, a ribonucleoprotein from Arabidopsis thaliana, contains two RNP-80 motifs and a novel acidic repeat arranged in an alpha-helix conformation.
    Bar-Zvi D; Shagan T; Schindler U; Cashmore AR
    Plant Mol Biol; 1992 Dec; 20(5):833-8. PubMed ID: 1463823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of RRM-type RNA-binding protein genes and the analysis of their relatedness by using a numerical approach.
    Kim YJ; Baker BS
    Mol Cell Biol; 1993 Jan; 13(1):174-83. PubMed ID: 8417324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of heterocyst glycolipids in cyanobacteria.
    Bauersachs T; Compaoré J; Hopmans EC; Stal LJ; Schouten S; Sinninghe Damsté JS
    Phytochemistry; 2009 Dec; 70(17-18):2034-9. PubMed ID: 19772975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved temperature-dependent expression of RNA-binding proteins in cyanobacteria with different temperature optima.
    Ehira S; Hamano T; Hayashida T; Kojima K; Nakamoto H; Hiyama T; Ohmori M; Shivaji S; Sato N
    FEMS Microbiol Lett; 2003 Aug; 225(1):137-42. PubMed ID: 12900032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria.
    Cui H; Wang Y; Wang Y; Qin S
    BMC Evol Biol; 2012 Nov; 12():220. PubMed ID: 23157370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surveying DNA Elements within Functional Genes of Heterocyst-Forming Cyanobacteria.
    Hilton JA; Meeks JC; Zehr JP
    PLoS One; 2016; 11(5):e0156034. PubMed ID: 27206019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain.
    Landsman D
    Nucleic Acids Res; 1992 Jun; 20(11):2861-4. PubMed ID: 1614871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The RNP domain: a sequence-specific RNA-binding domain involved in processing and transport of RNA.
    Nagai K; Oubridge C; Ito N; Avis J; Evans P
    Trends Biochem Sci; 1995 Jun; 20(6):235-40. PubMed ID: 7543225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.