These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 8290352)

  • 1. Modulation of oligonucleotide duplex and triplex stability via hydrophobic interactions.
    Gryaznov SM; Lloyd DH
    Nucleic Acids Res; 1993 Dec; 21(25):5909-15. PubMed ID: 8290352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hoogsteen DNA duplexes of 3'-3'- and 5'-5'-linked oligonucleotides and trip formation with RNA and DNA pyrimidine single strands: experimental and molecular modeling studies.
    Kandimalla ER; Agrawal S
    Biochemistry; 1996 Dec; 35(48):15332-9. PubMed ID: 8952484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single strand targeted triplex formation: strand displacement of duplex DNA by foldback triplex-forming oligonucleotides.
    Kandimalla ER; Manning AN; Agrawal S
    J Biomol Struct Dyn; 1995 Dec; 13(3):483-91. PubMed ID: 8825728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single strand targeted triplex-formation. Destabilization of guanine quadruplex structures by foldback triplex-forming oligonucleotides.
    Kandimalla ER; Agrawal S
    Nucleic Acids Res; 1995 Mar; 23(6):1068-74. PubMed ID: 7537368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triplex formation at physiological pH by 5-Me-dC-N4-(spermine) [X] oligodeoxynucleotides: non protonation of N3 in X of X*G:C triad and effect of base mismatch/ionic strength on triplex stabilities.
    Barawkar DA; Rajeev KG; Kumar VA; Ganesh KN
    Nucleic Acids Res; 1996 Apr; 24(7):1229-37. PubMed ID: 8614624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study.
    Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triple helix formation with purine-rich phosphorothioate-containing oligonucleotides covalently linked to an acridine derivative.
    Lacoste J; François JC; Hélène C
    Nucleic Acids Res; 1997 May; 25(10):1991-8. PubMed ID: 9115367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origins of high sequence selectivity: a stopped-flow kinetics study of DNA/RNA hybridization by duplex- and triplex-forming oligonucleotides.
    Wang S; Friedman AE; Kool ET
    Biochemistry; 1995 Aug; 34(30):9774-84. PubMed ID: 7542923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternate-strand triplex formation: modulation of binding to matched and mismatched duplexes by sequence choice in the Pu-Pu-Py block.
    Balatskaya SV; Belotserkovskii BP; Johnston BH
    Biochemistry; 1996 Oct; 35(41):13328-37. PubMed ID: 8873599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-phase synthesis of positively charged deoxynucleic guanidine (DNG) tethering a Hoechst 33258 analogue: triplex and duplex stabilization by simultaneous minor groove binding.
    Reddy PM; Bruice TC
    J Am Chem Soc; 2004 Mar; 126(12):3736-47. PubMed ID: 15038726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimolecular DNA triplexes: duplex extensions show implications for H-form DNA stability.
    Mundt AA; Crouch GJ; Eaton BE
    Biochemistry; 1997 Oct; 36(42):13004-9. PubMed ID: 9335561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-strand-targeted triplex formation: stability, specificity and RNase H activation properties.
    Kandimalla ER; Agrawal S
    Gene; 1994 Nov; 149(1):115-21. PubMed ID: 7525410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules.
    Egholm M; Buchardt O; Christensen L; Behrens C; Freier SM; Driver DA; Berg RH; Kim SK; Norden B; Nielsen PE
    Nature; 1993 Oct; 365(6446):566-8. PubMed ID: 7692304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Head-to-head bis-hairpin polyamide minor groove binders and their conjugates with triplex-forming oligonucleotides: studies of interaction with target double-stranded DNA.
    Halby L; Ryabinin VA; Sinyakov AN; Novopashina DS; Venyaminova AG; Grokhovsky SL; Surovaya AN; Gursky GV; Boutorine AS
    J Biomol Struct Dyn; 2007 Aug; 25(1):61-76. PubMed ID: 17676939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of DNA double and triple helices by conjugation of minor groove binders to oligonucleotides.
    Boutorine AS; Ryabinin VA; Novopashina DS; Venyaminova AG; Hélène C; Sinyakov AS
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1267-72. PubMed ID: 14565396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions.
    Miyoshi D; Nakamura K; Tateishi-Karimata H; Ohmichi T; Sugimoto N
    J Am Chem Soc; 2009 Mar; 131(10):3522-31. PubMed ID: 19236045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The high stability of the triple helices formed between short purine oligonucleotides and SIV/HIV-2 vpx genes is determined by the targeted DNA structure.
    Svinarchuk F; Monnot M; Merle A; Malvy C; Fermandjian S
    Nucleic Acids Res; 1995 Oct; 23(19):3831-6. PubMed ID: 7479024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable and selective formation of hoogsteen-type triplexes and duplexes using twisted intercalating nucleic acids (TINA) prepared via postsynthetic Sonogashira solid-phase coupling reactions.
    Filichev VV; Pedersen EB
    J Am Chem Soc; 2005 Oct; 127(42):14849-58. PubMed ID: 16231939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif.
    Marfurt J; Parel SP; Leumann CJ
    Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.