These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 8290469)

  • 1. Chemical pathways of peptide degradation. V. Ascorbic acid promotes rather than inhibits the oxidation of methionine to methionine sulfoxide in small model peptides.
    Li S; Schöneich C; Wilson GS; Borchardt RT
    Pharm Res; 1993 Nov; 10(11):1572-9. PubMed ID: 8290469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-thiolate induced oxidation of methionine to methionine sulfoxide in small model peptides. Intramolecular catalysis by histidine.
    Schöneich C; Zhao F; Wilson GS; Borchardt RT
    Biochim Biophys Acta; 1993 Nov; 1158(3):307-22. PubMed ID: 8251532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation and precipitation of human relaxin induced by metal-catalyzed oxidation.
    Li S; Nguyen TH; Schöneich C; Borchardt RT
    Biochemistry; 1995 May; 34(17):5762-72. PubMed ID: 7727437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of polyaminocarboxylate metal chelators on iron-thiolate induced oxidation of methionine- and histidine-containing peptides.
    Zhao F; Yang J; Schöneich C
    Pharm Res; 1996 Jun; 13(6):931-8. PubMed ID: 8792435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Products of Cu(II)-catalyzed oxidation of alpha-synuclein fragments containing M1-D2 and H50 residues in the presence of hydrogen peroxide.
    Kowalik-Jankowska T; Rajewska A; Jankowska E; Grzonka Z
    Dalton Trans; 2008 Feb; (6):832-8. PubMed ID: 18239841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of TiCl4-mediated reduction of methionine sulfoxide in peptides with oxidizable or reducible residues.
    Pennington MW; Byrnes ME
    Pept Res; 1995; 8(1):39-43. PubMed ID: 7756753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radical production from free and peptide-bound methionine sulfoxide oxidation by peroxynitrite and hydrogen peroxide/iron(II).
    Nakao LS; Iwai LK; Kalil J; Augusto O
    FEBS Lett; 2003 Jul; 547(1-3):87-91. PubMed ID: 12860391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical pathways of peptide degradation: IX. Metal-catalyzed oxidation of histidine in model peptides.
    Khossravi M; Borchardt RT
    Pharm Res; 1998 Jul; 15(7):1096-102. PubMed ID: 9688066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative degradation of antiflammin 2.
    Ye JM; Wolfe JL
    Pharm Res; 1996 Feb; 13(2):250-5. PubMed ID: 8932445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ambivalent role of ascorbic acid in the metal-catalyzed oxidation of oligopeptides.
    Bodnár N; Várnagy K; Nagy L; Csire G; Kállay C
    J Inorg Biochem; 2021 Sep; 222():111510. PubMed ID: 34126320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palladium(II) complexes, as synthetic peptidases, regioselectively cleave the second peptide bond "upstream" from methionine and histidine side chains.
    Milović NM; Kostić NM
    J Am Chem Soc; 2002 May; 124(17):4759-69. PubMed ID: 11971725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper(II) interaction with the Human Prion 103-112 fragment - Coordination and oxidation.
    Csire G; Nagy L; Várnagy K; Kállay C
    J Inorg Biochem; 2017 May; 170():195-201. PubMed ID: 28260678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmaceutical Excipients Enhance Iron-Dependent Photo-Degradation in Pharmaceutical Buffers by near UV and Visible Light: Tyrosine Modification by Reactions of the Antioxidant Methionine in Citrate Buffer.
    Subelzu N; Schöneich C
    Pharm Res; 2021 May; 38(5):915-930. PubMed ID: 33881737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron oxidation in Mops buffer. Effect of EDTA, hydrogen peroxide and FeCl3.
    Tadolini B
    Free Radic Res Commun; 1987; 4(3):173-82. PubMed ID: 3148495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E. coli methionine sulfoxide reductase with a truncated N terminus or C terminus, or both, retains the ability to reduce methionine sulfoxide.
    Boschi-Muller S; Azza S; Branlant G
    Protein Sci; 2001 Nov; 10(11):2272-9. PubMed ID: 11604533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanism of the inhibition of glutamine synthetase and creatine phosphokinase by methionine sulfoxide.
    Haghighi AZ; Maples KR
    J Neurosci Res; 1996 Jan; 43(1):107-11. PubMed ID: 8838581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper(II) complexes of neurokinin A with point mutation (S5A) and products of copper-catalyzed oxidation; role of serine residue in peptides containing neurokinin A sequence.
    Jankowska E; Błaszak M; Kowalik-Jankowska T
    J Inorg Biochem; 2013 Apr; 121():1-9. PubMed ID: 23314592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental design-guided development of a stereospecific capillary electrophoresis assay for methionine sulfoxide reductase enzymes using a diastereomeric pentapeptide substrate.
    Zhu Q; Huo X; Heinemann SH; Schönherr R; El-Mergawy R; Scriba GK
    J Chromatogr A; 2014 Sep; 1359():224-9. PubMed ID: 25064531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of human insulin-like growth factor I in formulation studies. 3. Factorial experiments of the effects of ferric ions, EDTA, and visible light on methionine oxidation and covalent aggregation in aqueous solution.
    Fransson JR
    J Pharm Sci; 1997 Sep; 86(9):1046-50. PubMed ID: 9294820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical pathways of peptide degradation. X: effect of metal-catalyzed oxidation on the solution structure of a histidine-containing peptide fragment of human relaxin.
    Khossravi M; Borchardt RT
    Pharm Res; 2000 Jul; 17(7):851-8. PubMed ID: 10990205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.