These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8290581)

  • 21. Lateral geniculate neurons projecting to primary visual cortex show ocular dominance plasticity in adult mice.
    Jaepel J; Hübener M; Bonhoeffer T; Rose T
    Nat Neurosci; 2017 Dec; 20(12):1708-1714. PubMed ID: 29184207
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binocular visual responses in cells of the rat dLGN.
    Grieve KL
    J Physiol; 2005 Jul; 566(Pt 1):119-24. PubMed ID: 15905208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oscillatory discharge in the visual system: does it have a functional role?
    Ghose GM; Freeman RD
    J Neurophysiol; 1992 Nov; 68(5):1558-74. PubMed ID: 1479430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of ocular dominance columns in the absence of retinal input.
    Crowley JC; Katz LC
    Nat Neurosci; 1999 Dec; 2(12):1125-30. PubMed ID: 10570491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development.
    Tavazoie SF; Reid RC
    Nat Neurosci; 2000 Jun; 3(6):608-16. PubMed ID: 10816318
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anatomical organization of the visual system of the mink, Mustela vison.
    McConnell SK; LeVay S
    J Comp Neurol; 1986 Aug; 250(1):109-32. PubMed ID: 3016036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chronic electrical stimulation of afferents from one eye changes ocular dominance of visual cortical neurons in kittens.
    Ohshima M; Hata Y; Ichisaka S; Wakita M; Fukuda M; Kameyama K; Tsumoto T
    J Neurophysiol; 2002 Oct; 88(4):2147-51. PubMed ID: 12364536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of the mammalian visual system.
    Shatz CJ
    Mead Johnson Symp Perinat Dev Med; 1987; (29):19-26. PubMed ID: 3332904
    [No Abstract]   [Full Text] [Related]  

  • 29. Nerve growth factor prevents the amblyopic effects of monocular deprivation.
    Domenici L; Berardi N; Carmignoto G; Vantini G; Maffei L
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8811-5. PubMed ID: 1924342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NGF antibodies impair long-term depression at the mossy fibre-CA3 synapse in the developing hippocampus.
    Ruberti F; Berretta N; Cattaneo A; Cherubini E
    Brain Res Dev Brain Res; 1997 Jul; 101(1-2):295-7. PubMed ID: 9263605
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Postnatal development of the monkey's visual system.
    Blakemore C; Vital-Durand F
    Ciba Found Symp; 1981; 86():152-71. PubMed ID: 6802586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two distinct monoclonal antibodies raised against mouse beta nerve growth factor. Generation of bi-specific anti-nerve growth factor anti-horseradish peroxidase antibodies for use in a homogeneous enzyme immunoassay.
    Kenigsberg RL; Elliott PJ; Cuello AC
    J Immunol Methods; 1991 Feb; 136(2):247-57. PubMed ID: 1999653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cholinergic function in the hippocampus of juvenile rats chronically deprived of NGF.
    Avignone E; Molnar M; Berretta N; Casamenti F; Prosperi C; Ruberti F; Cattaneo A; Cherubini E
    Brain Res Dev Brain Res; 1998 Aug; 109(2):137-47. PubMed ID: 9729337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of long-term potentiation (LTP) in the medial (monocular) and lateral (binocular) rat primary visual cortex.
    Kuo MC; Dringenberg HC
    Brain Res; 2012 Dec; 1488():51-9. PubMed ID: 23063890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural modeling of functional visual pathways mapped with 2-deoxyglucose: effects of patterned light and footshock.
    McIntosh AR; Gonzalez-Lima F
    Brain Res; 1992 Apr; 578(1-2):75-86. PubMed ID: 1511292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphology of single geniculocortical afferents and functional recovery of the visual cortex after reverse monocular deprivation in the kitten.
    Antonini A; Gillespie DC; Crair MC; Stryker MP
    J Neurosci; 1998 Dec; 18(23):9896-909. PubMed ID: 9822746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anatomy and physiology of the afferent visual system.
    Prasad S; Galetta SL
    Handb Clin Neurol; 2011; 102():3-19. PubMed ID: 21601061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visual spatial summation in macaque geniculocortical afferents.
    Sceniak MP; Chatterjee S; Callaway EM
    J Neurophysiol; 2006 Dec; 96(6):3474-84. PubMed ID: 16928793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual Receptive Field Properties of Neurons in the Mouse Lateral Geniculate Nucleus.
    Tang J; Ardila Jimenez SC; Chakraborty S; Schultz SR
    PLoS One; 2016; 11(1):e0146017. PubMed ID: 26741374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuroplasticity in the cat's visual system: test of the role of the expanded retino-geniculo-parietal pathway in behavioral sparing following early lesions of visual cortex.
    Payne BR
    Exp Brain Res; 2004 Mar; 155(1):69-80. PubMed ID: 15064887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.