These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8290581)

  • 41. Ocular integration in the human visual cortex.
    Horton JC
    Can J Ophthalmol; 2006 Oct; 41(5):584-93. PubMed ID: 17016529
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Topography of cells responding with long latencies to flashes and cells projecting to layer I of area 17 in the rat dorsal lateral geniculate nucleus.
    Brauer K; Davidowa H; Schober W
    J Hirnforsch; 1984; 25(5):569-75. PubMed ID: 6501871
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Morphological development of the primary visual pathway in the child].
    de Courten C; Garey LJ
    J Fr Ophtalmol; 1983; 6(2):187-202. PubMed ID: 6345646
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Callosal contribution to ocular dominance in rat primary visual cortex.
    Cerri C; Restani L; Caleo M
    Eur J Neurosci; 2010 Oct; 32(7):1163-9. PubMed ID: 20726891
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of sleep deprivation on the postnatal development of visual-deprived cells in the cat's lateral geniculate nucleus.
    Pompeiano O; Pompeiano M; Corvaja N
    Arch Ital Biol; 1995 Dec; 134(1):121-40. PubMed ID: 8919197
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evidence that the lateral geniculate nucleus regulates the normal development of visual corticocortical projections in the cat.
    Carić D; Price DJ
    Exp Neurol; 1999 Apr; 156(2):353-62. PubMed ID: 10328942
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lifelong learning: ocular dominance plasticity in mouse visual cortex.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Curr Opin Neurobiol; 2006 Aug; 16(4):451-9. PubMed ID: 16837188
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Localization and organization of geniculocortical and corticofugal fiber tracts within the subcortical white matter.
    Woodward WR; Coull BM
    Neuroscience; 1984 Aug; 12(4):1089-99. PubMed ID: 6483192
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Some neural connections subserving binocular vision in ungulates.
    Pettigrew JD; Ramachandran VS; Bravo H
    Brain Behav Evol; 1984; 24(2-3):65-93. PubMed ID: 6466965
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional cell classes and functional architecture in the early visual system of a highly visual rodent.
    Van Hooser SD; Heimel JA; Nelson SB
    Prog Brain Res; 2005; 149():127-45. PubMed ID: 16226581
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of the projections from the dorsal lateral geniculate nucleus to the lateral suprasylvian visual area of cortex in the cat.
    Tong LL; Kalil RE; Spear PD
    J Comp Neurol; 1991 Dec; 314(3):526-33. PubMed ID: 1726109
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neuronal mechanisms of developmental plasticity in the cat's visual system.
    Rauschecker JP
    Hum Neurobiol; 1984; 3(2):109-14. PubMed ID: 6746333
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NGF prevents the changes induced by monocular deprivation during the critical period in rats.
    Yan HQ; Mazow ML; Dafny N
    Brain Res; 1996 Jan; 706(2):318-22. PubMed ID: 8822375
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Postnatal changes in nerve growth factor and brain derived neurotrophic factor levels in the retina, visual cortex, and geniculate nucleus in rats with retinitis pigmentosa.
    Amendola T; Fiore M; Aloe L
    Neurosci Lett; 2003 Jul; 345(1):37-40. PubMed ID: 12809983
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Competition for neurotrophic factors: ocular dominance columns.
    Elliott T; Shadbolt NR
    J Neurosci; 1998 Aug; 18(15):5850-8. PubMed ID: 9671672
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transplant of polymer-encapsulated cells genetically engineered to release nerve growth factor allows a normal functional development of the visual cortex in dark-reared rats.
    Pizzorusso T; Porciatti V; Tseng JL; Aebischer P; Maffei L
    Neuroscience; 1997 Sep; 80(2):307-11. PubMed ID: 9284336
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of neurotrophins in the development and plasticity of the visual system: experiments on dark rearing.
    Pizzorusso T; Fagiolini M; Gianfranceschi L; Porciatti V; Maffei L
    Int J Psychophysiol; 2000 Mar; 35(2-3):189-96. PubMed ID: 10677647
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Involvement of nerve growth factor in visual cortex plasticity.
    Gu Q
    Rev Neurosci; 1995; 6(4):329-51. PubMed ID: 8845973
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The action of neurotrophins in the development and plasticity of the visual cortex.
    Cellerino A; Maffei L
    Prog Neurobiol; 1996 May; 49(1):53-71. PubMed ID: 8817698
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cortical transplants reveal CNS trophic interactions in situ.
    Haun F; Cunningham TJ
    Brain Res; 1984 Aug; 317(2):290-4. PubMed ID: 6478253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.