These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8290605)

  • 1. Predicting Ca(2+)-binding sites in proteins.
    Nayal M; Di Cera E
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):817-21. PubMed ID: 8290605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards predicting Ca2+-binding sites with different coordination numbers in proteins with atomic resolution.
    Wang X; Kirberger M; Qiu F; Chen G; Yang JJ
    Proteins; 2009 Jun; 75(4):787-98. PubMed ID: 19003991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characteristics of protein binding sites for calcium and lanthanide ions.
    Pidcock E; Moore GR
    J Biol Inorg Chem; 2001 Jun; 6(5-6):479-89. PubMed ID: 11472012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valence screening of water in protein crystals reveals potential Na+ binding sites.
    Nayal M; Di Cera E
    J Mol Biol; 1996 Feb; 256(2):228-34. PubMed ID: 8594192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of metal ion binding and denaturation of a calcium binding protein from Entamoeba histolytica.
    Gopal B; Swaminathan CP; Bhattacharya S; Bhattacharya A; Murthy MR; Surolia A
    Biochemistry; 1997 Sep; 36(36):10910-6. PubMed ID: 9283081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Ca2+ -binding sites using refined carbon clusters.
    Zhao K; Wang X; Wong HC; Wohlhueter R; Kirberger MP; Chen G; Yang JJ
    Proteins; 2012 Dec; 80(12):2666-79. PubMed ID: 22821762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is the bond-valence method able to identify metal atoms in protein structures?
    Müller P; Köpke S; Sheldrick GM
    Acta Crystallogr D Biol Crystallogr; 2003 Jan; 59(Pt 1):32-7. PubMed ID: 12499536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T; Lin YL; Dudev M; Lim C
    J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All atom NMDA receptor transmembrane domain model development and simulations in lipid bilayers and water.
    Mesbahi-Vasey S; Veras L; Yonkunas M; Johnson JW; Kurnikova MG
    PLoS One; 2017; 12(6):e0177686. PubMed ID: 28582391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors governing the substitution of La3+ for Ca2+ and Mg2+ in metalloproteins: a DFT/CDM study.
    Dudev T; Chang LY; Lim C
    J Am Chem Soc; 2005 Mar; 127(11):4091-103. PubMed ID: 15771547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the equilibrium ion affinity and selectivity of the EF-hand calcium binding motif: substitutions at the gateway position.
    Drake SK; Lee KL; Falke JJ
    Biochemistry; 1996 May; 35(21):6697-705. PubMed ID: 8639620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of structural water for prediction of cation binding sites in apoproteins.
    Uroshlev LA; Kulakovskiy IV; Esipova NG; Tumanyan VG; Rahmanov SV; Makeev VJ
    J Biomol Struct Dyn; 2018 Jan; 36(1):221-232. PubMed ID: 28024445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Where metal ions bind in proteins.
    Yamashita MM; Wesson L; Eisenman G; Eisenberg D
    Proc Natl Acad Sci U S A; 1990 Aug; 87(15):5648-52. PubMed ID: 2377604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors controlling metal-ion selectivity in the binding sites of calcium-binding proteins. The metal-binding properties of amide donors. A crystallographic and thermodynamic study.
    Clapp LA; Siddons CJ; Whitehead JR; VanDerveer DG; Rogers RD; Griffin ST; Jones SB; Hancock RD
    Inorg Chem; 2005 Nov; 44(23):8495-502. PubMed ID: 16270989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SuperStar: improved knowledge-based interaction fields for protein binding sites.
    Verdonk ML; Cole JC; Watson P; Gillet V; Willett P
    J Mol Biol; 2001 Mar; 307(3):841-59. PubMed ID: 11273705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting calcium-binding sites in proteins - a graph theory and geometry approach.
    Deng H; Chen G; Yang W; Yang JJ
    Proteins; 2006 Jul; 64(1):34-42. PubMed ID: 16617426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation exploration of cooperative migration mechanism of calcium ions in sarcoplasmic reticulum Ca2+-ATPase.
    Huang Y; Li H; Bu Y
    J Comput Chem; 2009 Oct; 30(13):2136-45. PubMed ID: 19242958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic identification of Ca2+ and Sr2+ coordination sites in synaptotagmin I C2B domain.
    Cheng Y; Sequeira SM; Malinina L; Tereshko V; Söllner TH; Patel DJ
    Protein Sci; 2004 Oct; 13(10):2665-72. PubMed ID: 15340165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remarkable affinity and selectivity for Cs+ and uranyl (UO22+) binding to the manganese site of the apo-water oxidation complex of photosystem II.
    Ananyev GM; Murphy A; Abe Y; Dismukes GC
    Biochemistry; 1999 Jun; 38(22):7200-9. PubMed ID: 10353831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.