These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69 related articles for article (PubMed ID: 8291145)
1. [Correlation of acid-base equilibrium and glycolysis during muscle activity]. Verbitskiĭ ON; Skorik LV; Mel'nichuk DA Ukr Biokhim Zh (1978); 1993; 65(3):75-80. PubMed ID: 8291145 [TBL] [Abstract][Full Text] [Related]
2. Acid-base balance at exercise in normoxia and in chronic hypoxia. Revisiting the "lactate paradox". Cerretelli P; Samaja M Eur J Appl Physiol; 2003 Nov; 90(5-6):431-48. PubMed ID: 14504942 [TBL] [Abstract][Full Text] [Related]
3. [The blood acid-base values of various qualifying groups of sportsmen in physiological condition and in exercise]. Solov'ev VB; Gengin MT; Skudnov VM; Petrushova OP Ross Fiziol Zh Im I M Sechenova; 2010 May; 96(5):539-44. PubMed ID: 20583577 [TBL] [Abstract][Full Text] [Related]
4. Effects of multiple concurrent stressors on rectal temperature, blood acid-base status, and longissimus muscle glycolytic potential in market-weight pigs. Ritter MJ; Ellis M; Anderson DB; Curtis SE; Keffaber KK; Killefer J; McKeith FK; Murphy CM; Peterson BA J Anim Sci; 2009 Jan; 87(1):351-62. PubMed ID: 18676725 [TBL] [Abstract][Full Text] [Related]
5. [Effect of carbostimulin on indices of acid-base balance and lactate concentration in the blood of swimmer-athletes]. Verbitskiĭ ON; Tolkacheva NV; Mel'nichuk DA Ukr Biokhim Zh (1978); 1984; 56(1):94-6. PubMed ID: 6424293 [TBL] [Abstract][Full Text] [Related]
6. Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects. Wasserman K; Stringer WW; Casaburi R; Koike A; Cooper CB Z Kardiol; 1994; 83 Suppl 3():1-12. PubMed ID: 7941654 [TBL] [Abstract][Full Text] [Related]
7. The effect of isokinetic exercise on the relationship between blood lactate and muscle fatigue. Douris PC J Orthop Sports Phys Ther; 1993 Jan; 17(1):31-5. PubMed ID: 8467334 [TBL] [Abstract][Full Text] [Related]
8. [Acid-base equilibrium in sportsmen during physical exercise]. Brinzak VP; Kalinskiĭ MI; Val'tin AI; Povzhitkova MS Ukr Biokhim Zh (1978); 1983; 55(1):83-5. PubMed ID: 6829085 [TBL] [Abstract][Full Text] [Related]
9. High-intensity training improves plasma glucose and acid-base regulation during intermittent maximal exercise in type 1 diabetes. Harmer AR; Chisholm DJ; McKenna MJ; Morris NR; Thom JM; Bennett G; Flack JR Diabetes Care; 2007 May; 30(5):1269-71. PubMed ID: 17325264 [No Abstract] [Full Text] [Related]
10. Investigation of adaptive processes in child and adolescent swimmers. Acid-base parameters of swimmers and weight-lifters. Fendler K; Lissák K; Romhányi M; Kovács GL; Szücs R; Mátrai A Acta Physiol Acad Sci Hung; 1977; 49(1):27-36. PubMed ID: 39423 [TBL] [Abstract][Full Text] [Related]
11. [Changes in the acid-base equilibrium during muscular work in children]. Mrzena B; Mácek M; Vávra J; Zika K Cesk Pediatr; 1972 Aug; 27(8):389-91. PubMed ID: 5051736 [No Abstract] [Full Text] [Related]
12. Acid-base and electrolyte balance after exhausting exercise in endurance-trained and sprint-trained subjects. Medbø JI; Sejersted OM Acta Physiol Scand; 1985 Sep; 125(1):97-109. PubMed ID: 4050490 [TBL] [Abstract][Full Text] [Related]
13. In vivo skeletal muscle metabolism during dynamic exercise and recovery: assessment by nuclear magnetic resonance spectroscopy. Wong R; Lopaschuk G; Teo K; Walker D; Catellier D; Zhu G; Burton D; Collins-Nakai R; Montague T Can J Cardiol; 1992 Oct; 8(8):819-24. PubMed ID: 1423003 [TBL] [Abstract][Full Text] [Related]
14. [CO2 mass transfer and acid-base balance under conditions of muscular activity at sea level and in the mountains]. Filippov MM; Miniaĭlenko TD Ukr Biokhim Zh (1978); 1980; 52(2):171-4. PubMed ID: 6770517 [TBL] [Abstract][Full Text] [Related]
15. [Metabolic disorders in men kept in an environment with a low ammonia content and their correction by physical exercise]. Mukhamedieva LN; Zhuravlev VV; Nikitin EI; Grishina KV; Ivanova SM Kosm Biol Aviakosm Med; 1983; 17(6):46-9. PubMed ID: 6656188 [TBL] [Abstract][Full Text] [Related]
16. [State of the sympathetic-adrenal system and various indicators of the metabolic processes during the training cycle in sportsmen]. Korobova AA; Matlina EA; Vasil'ev VN; Balashova NN; Galimov SD Lab Delo; 1977; (8):469-74. PubMed ID: 72853 [No Abstract] [Full Text] [Related]
17. Diet composition and the performance of high-intensity exercise. Maughan RJ; Greenhaff PL; Leiper JB; Ball D; Lambert CP; Gleeson M J Sports Sci; 1997 Jun; 15(3):265-75. PubMed ID: 9232552 [TBL] [Abstract][Full Text] [Related]
18. Estimation of an individual equilibrium between lactate production and catabolism during exercise. Tegtbur U; Busse MW; Braumann KM Med Sci Sports Exerc; 1993 May; 25(5):620-7. PubMed ID: 8492691 [TBL] [Abstract][Full Text] [Related]
19. [Gas exchange, blood acid-base balance and mechanical muscle efficiency during incremental levels of exertion in young healthy individuals]. Zoładź JA; Duda K; Majerczak J; Kulpa J Pneumonol Alergol Pol; 1998; 66(3-4):163-72. PubMed ID: 9857660 [TBL] [Abstract][Full Text] [Related]
20. Sustained swimming increases erythrocyte MCT1 during erythropoiesis and ability to regulate pH homeostasis in rat. Aoi W; Iwashita S; Fujie M; Suzuki M Int J Sports Med; 2004 Jul; 25(5):339-44. PubMed ID: 15241712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]