These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 8291265)
1. Microbial models of mammalian metabolism: involvement of cytochrome P450 in the N-demethylation of N-methylcarbazole by Cunninghamella echinulata. Yang W; Jiang T; Acosta D; Davis PJ Xenobiotica; 1993 Sep; 23(9):973-82. PubMed ID: 8291265 [TBL] [Abstract][Full Text] [Related]
2. Microbial models of mammalian metabolism. Biotransformations of N-methylcarbazole using the fungus Cunninghamella echinulata. Yang W; Davis PJ Drug Metab Dispos; 1992; 20(1):38-46. PubMed ID: 1346994 [TBL] [Abstract][Full Text] [Related]
3. Production of a toxic, novel mammalian metabolite of N-methylcarbazole predicted by a fungal cell model of mammalian metabolism. Yang W; Jiang T; Acosta D; Davis PJ Toxicol Lett; 1992 May; 60(3):307-14. PubMed ID: 1595089 [TBL] [Abstract][Full Text] [Related]
4. Source of the oxygen atom in the product of cytochrome P-450-catalyzed N-demethylation reactions. Kedderis GL; Dwyer LA; Rickert DE; Hollenberg PF Mol Pharmacol; 1983 May; 23(3):758-60. PubMed ID: 6408392 [TBL] [Abstract][Full Text] [Related]
5. Metabolism of N-methylcarbazole by rat lung microsomes. Ibe BO; Raj JU Exp Lung Res; 1994; 20(3):207-22. PubMed ID: 7925139 [TBL] [Abstract][Full Text] [Related]
6. In vitro metabolism and toxicity assessment of N-methylcarbazole in primary cultured rat hepatocytes. Yang W; Jiang TR; Davis PJ; Acosta D Toxicology; 1991; 68(3):217-26. PubMed ID: 1896996 [TBL] [Abstract][Full Text] [Related]
7. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. I. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation. Mani C; Gelboin HV; Park SS; Pearce R; Parkinson A; Kupfer D Drug Metab Dispos; 1993; 21(4):645-56. PubMed ID: 8104124 [TBL] [Abstract][Full Text] [Related]
8. Fungal transformations of antihistamines: metabolism of cyproheptadine hydrochloride by Cunninghamella elegans. Zhang D; Hansen EB; Deck J; Heinze TM; Henderson A; Korfmacher WA; Cerniglia CE Xenobiotica; 1997 Mar; 27(3):301-15. PubMed ID: 9141237 [TBL] [Abstract][Full Text] [Related]
9. 18O studies of the peroxidase-catalyzed oxidation of N-methylcarbazole. Mechanisms of carbinolamine and carboxaldehyde formation. Kedderis GL; Rickert DE; Pandey RN; Hollenberg PF J Biol Chem; 1986 Dec; 261(34):15910-4. PubMed ID: 3782097 [TBL] [Abstract][Full Text] [Related]
10. Microbial models of mammalian metabolism: conversion of warfarin to 4'-hydroxywarfarin using Cunninghamella bainieri. Rizzo JD; Davis PJ J Pharm Sci; 1989 Mar; 78(3):183-9. PubMed ID: 2724074 [TBL] [Abstract][Full Text] [Related]
11. P450 catalysed S-oxidation of dibenzothiophene by Cunninghamella elegans. Schlenk D; Bevers RJ; Vertino AM; Cerniglia CE Xenobiotica; 1994 Nov; 24(11):1077-83. PubMed ID: 7701849 [TBL] [Abstract][Full Text] [Related]
12. Identification of metabolic pathways involved in the biotransformation of tolperisone by human microsomal enzymes. Dalmadi B; Leibinger J; Szeberényi S; Borbás T; Farkas S; Szombathelyi Z; Tihanyi K Drug Metab Dispos; 2003 May; 31(5):631-6. PubMed ID: 12695352 [TBL] [Abstract][Full Text] [Related]
13. Biotransformation of amitriptyline by Cunninghamella elegans. Zhang D; Evans FE; Freeman JP; Duhart B; Cerniglia CE Drug Metab Dispos; 1995 Dec; 23(12):1417-25. PubMed ID: 8689954 [TBL] [Abstract][Full Text] [Related]
14. Involvement of cytochrome P450 in pentachlorophenol transformation in a white rot fungus Phanerochaete chrysosporium. Ning D; Wang H PLoS One; 2012; 7(9):e45887. PubMed ID: 23029295 [TBL] [Abstract][Full Text] [Related]
15. Metabolism of a fungicide mepanipyrim by soil fungus Cunninghamella elegans ATCC36112. Zhu YZ; Keum YS; Yang L; Lee H; Park H; Kim JH J Agric Food Chem; 2010 Dec; 58(23):12379-84. PubMed ID: 21047134 [TBL] [Abstract][Full Text] [Related]
16. Initial characterization of the major mouse cytochrome P450 enzymes involved in the reductive metabolism of the hypoxic cytotoxin 3-amino-1,2,4-benzotriazine-1,4-di-N-oxide (tirapazamine, SR 4233, WIN 59075). Riley RJ; Hemingway SA; Graham MA; Workman P Biochem Pharmacol; 1993 Mar; 45(5):1065-77. PubMed ID: 8461036 [TBL] [Abstract][Full Text] [Related]
17. Involvement of cytochrome P450 3A enzyme family in the major metabolic pathways of toremifene in human liver microsomes. Berthou F; Dreano Y; Belloc C; Kangas L; Gautier JC; Beaune P Biochem Pharmacol; 1994 May; 47(10):1883-95. PubMed ID: 8204106 [TBL] [Abstract][Full Text] [Related]
18. Metabolism of methoxychlor by Cunninghamella elegans ATCC36112. Keum YS; Lee YH; Kim JH J Agric Food Chem; 2009 Sep; 57(17):7931-7. PubMed ID: 19691325 [TBL] [Abstract][Full Text] [Related]
19. Carbazole hydroxylation by the filamentous fungi of the Cunninghamella species. Zawadzka K; Bernat P; Felczak A; Lisowska K Environ Sci Pollut Res Int; 2015 Dec; 22(24):19658-66. PubMed ID: 26276273 [TBL] [Abstract][Full Text] [Related]
20. Hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by rat prostate microsomes: effects of antibodies and chemical inhibitors of cytochrome P450 enzymes. Gemzik B; Green J; Parkinson A Arch Biochem Biophys; 1992 Aug; 296(2):355-65. PubMed ID: 1632629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]