BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 8291970)

  • 21. Wrist motion in handrim wheelchair propulsion.
    Veeger HE; Meershoek LS; van der Woude LH; Langenhoff JM
    J Rehabil Res Dev; 1998 Jul; 35(3):305-13. PubMed ID: 9704314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trunk and neck kinematics during overground manual wheelchair propulsion in persons with tetraplegia.
    Julien MC; Morgan K; Stephens CL; Standeven J; Engsberg J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):213-8. PubMed ID: 23548111
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings.
    Gorce P; Louis N
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):7-15. PubMed ID: 21840091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulated effect of reaction force redirection on the upper extremity mechanical demand imposed during manual wheelchair propulsion.
    Munaretto JM; McNitt-Gray JL; Flashner H; Requejo PS
    Clin Biomech (Bristol, Avon); 2012 Mar; 27(3):255-62. PubMed ID: 22071430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of visual biofeedback on the propulsion effectiveness of experienced wheelchair users.
    Kotajarvi BR; Basford JR; An KN; Morrow DA; Kaufman KR
    Arch Phys Med Rehabil; 2006 Apr; 87(4):510-5. PubMed ID: 16571390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinematics of wheelchair propulsion in adults and children with spinal cord injury.
    Bednarczyk JH; Sanderson DJ
    Arch Phys Med Rehabil; 1994 Dec; 75(12):1327-34. PubMed ID: 7993172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of methods to compute the point of force application in handrim wheelchair propulsion: a technical note.
    Sabick MB; Zhao KD; An KN
    J Rehabil Res Dev; 2001; 38(1):57-68. PubMed ID: 11322471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shoulder load during synchronous handcycling and handrim wheelchair propulsion in persons with paraplegia.
    Arnet U; van Drongelen S; Scheel-Sailer A; van der Woude LH; Veeger DH
    J Rehabil Med; 2012 Mar; 44(3):222-8. PubMed ID: 22367531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of shoulder muscle electromyographic activity during standard manual wheelchair and push-rim activated power assisted wheelchair propulsion in persons with complete tetraplegia.
    Lighthall-Haubert L; Requejo PS; Mulroy SJ; Newsam CJ; Bontrager E; Gronley JK; Perry J
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1904-15. PubMed ID: 19887216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reliability of biomechanical variables during wheelchair ergometry testing.
    Finley MA; Rodgers MM; Rasch EK; McQuade KJ; Keyser RE
    J Rehabil Res Dev; 2002; 39(1):73-81. PubMed ID: 11926329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of increased load on scapular kinematics during manual wheelchair propulsion in individuals with paraplegia and tetraplegia.
    Raina S; McNitt-Gray JL; Mulroy S; Requejo PS
    Hum Mov Sci; 2012 Apr; 31(2):397-407. PubMed ID: 21782267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Consequences of a cross slope on wheelchair handrim biomechanics.
    Richter WM; Rodriguez R; Woods KR; Axelson PW
    Arch Phys Med Rehabil; 2007 Jan; 88(1):76-80. PubMed ID: 17207679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of backrest height on wheelchair propulsion biomechanics for level and uphill conditions.
    Yang YS; Koontz AM; Yeh SJ; Chang JJ
    Arch Phys Med Rehabil; 2012 Apr; 93(4):654-9. PubMed ID: 22325682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Symmetry of the elbow kinematics during racing wheelchair propulsion.
    Goosey VL; Campbell IG
    Ergonomics; 1998 Dec; 41(12):1810-20. PubMed ID: 9857839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Power-assisted wheels ease energy costs and perceptual responses to wheelchair propulsion in persons with shoulder pain and spinal cord injury.
    Nash MS; Koppens D; van Haaren M; Sherman AL; Lippiatt JP; Lewis JE
    Arch Phys Med Rehabil; 2008 Nov; 89(11):2080-5. PubMed ID: 18996235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of an abdominal binder during wheelchair exercise.
    Kerk JK; Clifford PS; Snyder AC; Prieto TE; O'Hagan KP; Schot PK; Myklebust JB; Myklebust BM
    Med Sci Sports Exerc; 1995 Jun; 27(6):913-9. PubMed ID: 7658955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scapular kinematics during transfers in manual wheelchair users with and without shoulder impingement.
    Finley MA; McQuade KJ; Rodgers MM
    Clin Biomech (Bristol, Avon); 2005 Jan; 20(1):32-40. PubMed ID: 15567534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanics of wheelchair propulsion by able-bodied subjects.
    Ruggles DL; Cahalan T; An KN
    Arch Phys Med Rehabil; 1994 May; 75(5):540-4. PubMed ID: 8185446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.
    Kloosterman MG; Buurke JH; de Vries W; Van der Woude LH; Rietman JS
    Med Eng Phys; 2015 Oct; 37(10):961-8. PubMed ID: 26307457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.