BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8292022)

  • 21. A region N-terminal to the tandem SH3 domain of p47phox plays a crucial role in the activation of the phagocyte NADPH oxidase.
    Taura M; Miyano K; Minakami R; Kamakura S; Takeya R; Sumimoto H
    Biochem J; 2009 Apr; 419(2):329-38. PubMed ID: 19090790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cryptic O2- -generating NADPH oxidase in dendritic cells.
    Elsen S; Doussière J; Villiers CL; Faure M; Berthier R; Papaioannou A; Grandvaux N; Marche PN; Vignais PV
    J Cell Sci; 2004 May; 117(Pt 11):2215-26. PubMed ID: 15126623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study on the superoxide-producing enzyme of eosinophils and neutrophils--comparison of the NADPH oxidase components.
    Someya A; Nishijima K; Nunoi H; Irie S; Nagaoka I
    Arch Biochem Biophys; 1997 Sep; 345(2):207-13. PubMed ID: 9308891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Respiratory burst of rabbit peritoneal neutrophils. Transition from an NADPH diaphorase activity to an .O2(-)-generating oxidase activity.
    Laporte F; Doussiere J; Vignais PV
    Eur J Biochem; 1990 Nov; 194(1):301-8. PubMed ID: 2174779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Taurine chloramine inhibits PMA-stimulated superoxide production in human neutrophils perhaps by inhibiting phosphorylation and translocation of p47(phox).
    Choi HS; Cha YN; Kim C
    Int Immunopharmacol; 2006 Sep; 6(9):1431-40. PubMed ID: 16846837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NADPH oxidase activity of neutrophil specific granules: requirements for cytosolic components and evidence of assembly during cell activation.
    Ambruso DR; Cusack N; Thurman G
    Mol Genet Metab; 2004 Apr; 81(4):313-21. PubMed ID: 15059619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A synthetic peptide containing a predominant protein kinase C site within p47phox inhibits the NADPH oxidase in intact neutrophils.
    Labadia ME; Zu YL; Huang CK
    J Leukoc Biol; 1996 Jan; 59(1):116-24. PubMed ID: 8558059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Affinity labeling of the cytosolic and membrane components of the respiratory burst oxidase by the 2',3'-dialdehyde derivative of NADPH. Evidence for a cytosolic location of the nucleotide-binding site in the resting cell.
    Smith RM; Curnutte JT; Babior BM
    J Biol Chem; 1989 Feb; 264(4):1958-62. PubMed ID: 2536695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NADPH-binding component of the respiratory burst oxidase system: studies using neutrophil membranes from patients with chronic granulomatous disease lacking the beta-subunit of cytochrome b558.
    Tsunawaki S; Mizunari H; Namiki H; Kuratsuji T
    J Exp Med; 1994 Jan; 179(1):291-7. PubMed ID: 8270871
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Membrane association of Rac is required for high activity of the respiratory burst oxidase.
    Kreck ML; Freeman JL; Abo A; Lambeth JD
    Biochemistry; 1996 Dec; 35(49):15683-92. PubMed ID: 8961931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of the leukocyte NADPH oxidase subunit p47phox by protein kinase C. A phosphorylation-dependent change in the conformation of the C-terminal end of p47phox.
    Park JW; Babior BM
    Biochemistry; 1997 Jun; 36(24):7474-80. PubMed ID: 9200696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human neutrophil cytosolic activation factor of the NADPH oxidase. Characterization of activation kinetics.
    Umeki S
    J Biol Chem; 1990 Mar; 265(9):5049-54. PubMed ID: 2156861
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superoxide generation by the electrogenic NADPH oxidase of human neutrophils is limited by the movement of a compensating charge.
    Henderson LM; Chappell JB; Jones OT
    Biochem J; 1988 Oct; 255(1):285-90. PubMed ID: 2848506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The fatty acid bimodal action on superoxide anion production by human adherent monocytes under phorbol 12-myristate 13-acetate or diacylglycerol activation can be explained by the modulation of protein kinase C and p47phox translocation.
    Kadri-Hassani N; Léger CL; Descomps B
    J Biol Chem; 1995 Jun; 270(25):15111-8. PubMed ID: 7797495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The cytosolic subunit p67phox contains an NADPH-binding site that participates in catalysis by the leukocyte NADPH oxidase.
    Smith RM; Connor JA; Chen LM; Babior BM
    J Clin Invest; 1996 Aug; 98(4):977-83. PubMed ID: 8770870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uncompetitive inhibition of superoxide generation by a synthetic peptide corresponding to a predicted NADPH binding site in gp91-phox, a component of the phagocyte respiratory oxidase.
    Tsuchiya T; Imajoh-Ohmi S; Nunoi H; Kanegasaki S
    Biochem Biophys Res Commun; 1999 Apr; 257(1):124-8. PubMed ID: 10092521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Modulation by some fatty acids of protein kinase C-dependent NADPH oxidase in human adherent monocyte: mechanism of action, possible implication in atherogenesis].
    Léger CL; Kadri-Hassani N
    C R Seances Soc Biol Fil; 1995; 189(5):765-79. PubMed ID: 8673625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diradylglycerol synergizes with an anionic amphiphile to activate superoxide generation and phosphorylation of p47phox in a cell-free system from human neutrophils.
    Burnham DN; Uhlinger DJ; Lambeth JD
    J Biol Chem; 1990 Oct; 265(29):17550-9. PubMed ID: 2170384
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of NADPH oxidase activation: translocation of p40phox, Rac1 and Rac2 from the cytosol to the membranes in human neutrophils lacking p47phox or p67phox.
    Dusi S; Donini M; Rossi F
    Biochem J; 1996 Mar; 314 ( Pt 2)(Pt 2):409-12. PubMed ID: 8670049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of sulfur amino acids on stimulus-induced superoxide generation and translocation of p47phox and p67phox to cell membrane in human neutrophils and the scavenging of free radical.
    Kitaoka N; Liu G; Masuoka N; Yamashita K; Manabe M; Kodama H
    Clin Chim Acta; 2005 Mar; 353(1-2):109-16. PubMed ID: 15698597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.