These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 8292487)

  • 1. Identification of novel catecholamine absorbing proteins in the central nervous system.
    Ross GM; McCarry BE; Thakur S; Mishra RK
    J Mol Neurosci; 1993; 4(3):141-8. PubMed ID: 8292487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Similar binding of 3H-ADTN and 3H-apomorphine to calf brain dopamine receptors.
    Seeman P; Woodruff GN; Poat JA
    Eur J Pharmacol; 1979 Apr; 55(2):137-42. PubMed ID: 456412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent affinity labeling of brain catecholamine-absorbing proteins using a high-specific-activity substituted tetrahydronaphthalene.
    Ross GM; McCarry BE; Mishra RK
    J Neurochem; 1995 Dec; 65(6):2783-9. PubMed ID: 7595578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoaffinity labeling of the dopamine reuptake carrier protein with 3-azido[3H]GBR-12935.
    Berger SP; Martenson RE; Laing P; Thurkauf A; Decosta B; Rice KC; Paul SM
    Mol Pharmacol; 1991 Apr; 39(4):429-35. PubMed ID: 2017146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the stability of 3H-dopamine, 3H-apomorphine and 3H-ADTN: effects of sodium ascorbate and EDTA.
    Cabbat FS; Manzino L; Heikkila RE
    Res Commun Chem Pathol Pharmacol; 1985 Mar; 47(3):333-43. PubMed ID: 3922020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of brain catecholamine absorbing proteins by dopaminergic agents.
    Modi PI; Kashyap A; Nair VD; Ross GM; Fu M; Savelli JE; Marcotte ER; Barlas C; Mishra RK
    Eur J Pharmacol; 1996 Mar; 299(1-3):213-20. PubMed ID: 8901025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [3H] 2-Amino-6,7-dihydroxy 1,2,3,4-tetrahydronapthalene (ADTN): a potential specific dopamine receptor ligand.
    Clement-Cormier Y; Abel M
    Res Commun Chem Pathol Pharmacol; 1978 Oct; 22(1):15-25. PubMed ID: 725314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of 3H-ADTN, a dopamine agonist, to membranes of the bovine retina.
    Osborne NN
    Cell Mol Neurobiol; 1981 Jun; 1(2):167-74. PubMed ID: 7346167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cocaine treatment increases expression of a 40 kDa catecholamine-regulated protein in discrete brain regions.
    Sharan N; Chong VZ; Nair VD; Mishra RK; Hayes RJ; Gardner EL
    Synapse; 2003 Jan; 47(1):33-44. PubMed ID: 12422371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of the pH dependence of the binding of WIN 35,428 to the dopamine transporter in rat striatal membranes: is the bioactive form positively charged or neutral?
    Xu C; Reith ME
    J Pharmacol Exp Ther; 1996 Sep; 278(3):1340-8. PubMed ID: 8819521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercuric chloride and p-chloromercuriphenylsulfonate exert a biphasic effect on the binding of the stimulant [3H]methylphenidate to the dopamine transporter.
    Schweri MM
    Synapse; 1994 Mar; 16(3):188-94. PubMed ID: 8197581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of unique ADTN-catecholamine binding sites in the iris root-ciliary body of rabbits.
    Rohde BH; Chiou GC
    Curr Eye Res; 1989 Dec; 8(12):1225-31. PubMed ID: 2560692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro Ca2+ dependent proteolysis in brain tissues: a possible source of error in transmitter metabolism studies.
    Hamon M; Bourgoin S; Hery F; Glowinski J
    J Neurochem; 1974 Oct; 23(4):849-56. PubMed ID: 4372323
    [No Abstract]   [Full Text] [Related]  

  • 14. Steric requirements for catecholamine uptake by rat brain synaptosomes: studies with rigid analogs of amphetamine.
    Horn AS; Snyder SH
    J Pharmacol Exp Ther; 1972 Mar; 180(3):523-30. PubMed ID: 5012779
    [No Abstract]   [Full Text] [Related]  

  • 15. Chlordecone interaction with catecholamine binding and uptake in rat brain synaptosomes.
    Desaiah D
    Neurotoxicology; 1985; 6(1):159-65. PubMed ID: 2581192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific binding of [(11)C]raclopride and N-[(3)H]propyl-norapomorphine to dopamine receptors in living mouse striatum: occupancy by endogenous dopamine and guanosine triphosphate-free G protein.
    Cumming P; Wong DF; Gillings N; Hilton J; Scheffel U; Gjedde A
    J Cereb Blood Flow Metab; 2002 May; 22(5):596-604. PubMed ID: 11973432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serotonin-binding proteins in the bovine cerebral cortex: interaction with serotonin and catecholamines.
    Jimenez Del Rio M; Pinxteren J; De Potter W; Ebinger G; Vauquelin G
    Eur J Pharmacol; 1992 Mar; 225(3):225-34. PubMed ID: 1516655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity of diastereomers of [99mTc]TRODAT-1 as dopamine transporter imaging agents.
    Meegalla SK; Plössl K; Kung MP; Stevenson DA; Mu M; Kushner S; Liable-Sands LM; Rheingold AL; Kung HF
    J Med Chem; 1998 Feb; 41(4):428-36. PubMed ID: 9484494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of [3H]pergolide mesylate to dopamine receptors of mammalian brains.
    Wong DT; Bymaster FP; Lane PT; Kau D; Bach NJ; Kornfeld EC
    Res Commun Chem Pathol Pharmacol; 1980 Nov; 30(2):195-210. PubMed ID: 7444158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opposing effects of clomipramine on [125I]RTI-55 and [3H]N-methylspiperone binding in mouse striatum: important role of other factors than endogenous dopamine?
    Inoue O; Kobayashi K; Hosoi R; Gee A
    Synapse; 1998 Nov; 30(3):338-40. PubMed ID: 9776138
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.