These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8292501)

  • 41. Decreased inositol (1,4,5)-trisphosphate receptor levels in Alzheimer's disease cerebral cortex: selectivity of changes and possible correlation to pathological severity.
    Haug LS; Ostvold AC; Cowburn RF; Garlind A; Winblad B; Bogdanovich N; Walaas SI
    Neurodegeneration; 1996 Jun; 5(2):169-76. PubMed ID: 8819138
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Type 1 inositol 1,4,5-trisphosphate receptor knock-out mice: their phenotypes and their meaning in neuroscience and clinical practice.
    Matsumoto M; Nagata E
    J Mol Med (Berl); 1999 May; 77(5):406-11. PubMed ID: 10426189
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coupling of the IP3 receptor/Ca2+ channel with Ca2+ storage proteins chromogranins A and B in secretory granules.
    Yoo SH
    Trends Neurosci; 2000 Sep; 23(9):424-8. PubMed ID: 10941192
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inositol 1,4,5-trisphosphate and reperfusion arrhythmias.
    Woodcock EA; Arthur JF; Matkovich SJ
    Clin Exp Pharmacol Physiol; 2000 Sep; 27(9):734-7. PubMed ID: 10972542
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Regulation of inositol-1,4,5-triphosphate receptor by G(i)-protein].
    Nikashin AB; Neylon KB; Bobik A; Tkachuk VA
    Ross Fiziol Zh Im I M Sechenova; 1999 Aug; 85(8):1011-21. PubMed ID: 10643593
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cell signalling: IP3 receptors channel calcium into cell death.
    Hanson CJ; Bootman MD; Roderick HL
    Curr Biol; 2004 Nov; 14(21):R933-5. PubMed ID: 15530388
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inositol 1,4,5-trisphosphate receptors, secretory granules and secretion in endocrine and neuroendocrine cells.
    Blondel O; Bell GI; Seino S
    Trends Neurosci; 1995 Apr; 18(4):157-61. PubMed ID: 7778186
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of a novel regulatory mechanism for norepinephrine transporter activity by the IP3 receptor.
    Amano T; Aoki S; Setsuie R; Sakurai M; Wada K; Noda M
    Eur J Pharmacol; 2006 Apr; 536(1-2):62-8. PubMed ID: 16554048
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The type 1 inositol 1,4,5-trisphosphate receptor gene is altered in the opisthotonos mouse.
    Street VA; Bosma MM; Demas VP; Regan MR; Lin DD; Robinson LC; Agnew WS; Tempel BL
    J Neurosci; 1997 Jan; 17(2):635-45. PubMed ID: 8987786
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spermine increases the active and passive transport across the alveolar epithelium in situ: effect of thiol reagents.
    Saumon G; Martet G
    Pflugers Arch; 2001 Jan; 441(4):559-65. PubMed ID: 11212221
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional rearrangements within inositol 1,4,5-trisphosphate receptor by calcium.
    Hamada K; Terauchi A; Mikoshiba K
    J Biol Chem; 2003 Dec; 278(52):52881-9. PubMed ID: 14593123
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inositol trisphosphate (IP3) receptors and epileptic seizure.
    Imazawa M; Kabuto Y; Miyamoto K; Nishimura S; Yagi K
    Jpn J Psychiatry Neurol; 1989 Sep; 43(3):465-8. PubMed ID: 2560497
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of Ca channel by intracellular Ca2+ and Mg2+ in frog ventricular cells.
    Yamaoka K; Seyama I
    Pflugers Arch; 1996 Jan; 431(3):305-17. PubMed ID: 8584423
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pharmacological modulation of intracellular Ca(2+) channels at the single-channel level.
    Koulen P; Thrower EC
    Mol Neurobiol; 2001; 24(1-3):65-86. PubMed ID: 11831555
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adrenergic modulation of the type 1 IP3 receptors in the rat heart.
    Jurkovicova D; Kubovcakova L; Hudecova S; Kvetnansky R; Krizanova O
    Biochim Biophys Acta; 2006 Jan; 1763(1):18-24. PubMed ID: 16377004
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intracellular Mg2+ inhibits the IP3-activated IK(Ca) in NG108-15 cells. [Why intracellular citrate can be useful for recording IK(Ca)].
    Robbins J; Cloues R; Brown DA
    Pflugers Arch; 1992 Mar; 420(3-4):347-53. PubMed ID: 1598189
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of Ca2+ concentration by second messengers in newt olfactory receptor cell.
    Nakamura T; Tsuru K; Miyamoto S
    Neurosci Lett; 1994 Apr; 171(1-2):197-200. PubMed ID: 8084489
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of Ins(1,4,5)P3 receptor isoforms by endogenous modulators.
    Thrower EC; Hagar RE; Ehrlich BE
    Trends Pharmacol Sci; 2001 Nov; 22(11):580-6. PubMed ID: 11698102
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel aspect of photodynamic action: induction of recurrent spikes in cytosolic calcium concentration.
    Cui ZJ; Habara Y; Wang DY; Kanno T
    Photochem Photobiol; 1997 Feb; 65(2):382-6. PubMed ID: 9066314
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of nitric oxide and its intracellular signalling pathways in the control of Ca2+ homeostasis.
    Clementi E
    Biochem Pharmacol; 1998 Mar; 55(6):713-8. PubMed ID: 9586942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.