BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8292744)

  • 1. Fatty acid beta-oxidation-dependent bioactivation of halogenated thiaalkanoic acids in isolated rat hepatocytes.
    Fitzsimmons ME; Anders MW
    Chem Res Toxicol; 1993; 6(5):662-8. PubMed ID: 8292744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nephrotoxicity and hepatotoxicity of 5,6-dichloro-4-thia-5-hexenoic acid: evidence for fatty acid beta-oxidation-dependent bioactivation.
    Fitzsimmons ME; Baggs RB; Anders MW
    J Pharmacol Exp Ther; 1994 Oct; 271(1):515-23. PubMed ID: 7965751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medium-chain acyl-CoA dehydrogenase- and enoyl-CoA hydratase-dependent bioactivation of 5,6-dichloro-4-thia-5-hexenoyl-CoA.
    Fitzsimmons ME; Thorpe C; Anders MW
    Biochemistry; 1995 Apr; 34(13):4276-86. PubMed ID: 7703241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elimination reactions in the medium-chain acyl-CoA dehydrogenase: bioactivation of cytotoxic 4-thiaalkanoic acids.
    Baker-Malcolm JF; Haeffner-Gormley L; Wang L; Anders MW; Thorpe C
    Biochemistry; 1998 Feb; 37(5):1383-93. PubMed ID: 9477967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid beta-oxidation-dependent bioactivation of 5,6-dichloro-4-thia-5-hexenoate and analogs in isolated rat hepatocytes.
    Fitzsimmons ME; Anders MW
    Adv Exp Med Biol; 1991; 283():281-4. PubMed ID: 2068997
    [No Abstract]   [Full Text] [Related]  

  • 6. Fourier-transform ion cyclotron resonance mass spectrometric evidence for the formation of alpha-chloroenethiolates and thioketenes from chloroalkene-derived, cytotoxic 4-thiaalkanoates.
    Zhang TL; Wang L; Hashmi M; Anders MW; Thorpe C; Ridge DP
    Chem Res Toxicol; 1995; 8(7):907-10. PubMed ID: 8555404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium benzoate inhibits fatty acid oxidation in rat liver: effect on ammonia levels.
    Kalbag SS; Palekar AG
    Biochem Med Metab Biol; 1988 Oct; 40(2):133-42. PubMed ID: 3190922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactivation mechanism of cytotoxic homocysteine S-conjugates.
    Lash LH; Elfarra AA; Rakiewicz-Nemeth D; Anders MW
    Arch Biochem Biophys; 1990 Feb; 276(2):322-30. PubMed ID: 2154944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consequences of mitochondrial injury induced by pharmaceutical fatty acid oxidation inhibitors is characterized in human and rat liver slices.
    Vickers AE; Bentley P; Fisher RL
    Toxicol In Vitro; 2006 Oct; 20(7):1173-82. PubMed ID: 16545538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. S-(1,2-dichlorovinyl)-L-homocysteine-induced cytotoxicity in isolated rat kidney cells.
    Lash LH; Elfarra AA; Anders MW
    Arch Biochem Biophys; 1986 Dec; 251(2):432-9. PubMed ID: 3800376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chain length and sulphur position of thia fatty acids on their incorporation into phospholipids in 7800 C1 hepatoma cells and isolated rat hepatocytes, and their effects on fatty acid composition of phospholipids.
    Wu P; Grav HJ; Horn R; Bremer J
    Biochem Pharmacol; 1996 Mar; 51(6):751-8. PubMed ID: 8602870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione-dependent metabolism of trichloroethylene in isolated liver and kidney cells of rats and its role in mitochondrial and cellular toxicity.
    Lash LH; Xu Y; Elfarra AA; Duescher RJ; Parker JC
    Drug Metab Dispos; 1995 Aug; 23(8):846-53. PubMed ID: 7493552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The involvement of carnitine intermediates in peroxisomal fatty acid oxidation: a study with 2-bromofatty acids.
    Buechler KF; Lowenstein JM
    Arch Biochem Biophys; 1990 Sep; 281(2):233-8. PubMed ID: 2393299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aroclor 1254 induced cytotoxicity and mitochondrial dysfunction in isolated rat hepatocytes.
    Aly HA; Domènech O
    Toxicology; 2009 Aug; 262(3):175-83. PubMed ID: 19486918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between mitochondrial activation and toxicity of some substituted carboxylic acids.
    Yao KW; Mao LF; Luo MJ; Schulz H
    Chem Biol Interact; 1994 Mar; 90(3):225-34. PubMed ID: 8168171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkylthio acetic acids (3-thia fatty acids)--a new group of non-beta-oxidizable peroxisome-inducing fatty acid analogues--II. Dose-response studies on hepatic peroxisomal- and mitochondrial changes and long-chain fatty acid metabolizing enzymes in rats.
    Berge RK; Aarsland A; Kryvi H; Bremer J; Aarsaether N
    Biochem Pharmacol; 1989 Nov; 38(22):3969-79. PubMed ID: 2574577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-alanine-glyoxylate aminotransferase II of rat kidney and liver mitochondria possesses cysteine S-conjugate beta-lyase activity: a contributing factor to the nephrotoxicity/hepatotoxicity of halogenated alkenes?
    Cooper AJ; Krasnikov BF; Okuno E; Jeitner TM
    Biochem J; 2003 Nov; 376(Pt 1):169-78. PubMed ID: 12859250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of thia-substituted fatty acids on mitochondrial and peroxisomal beta-oxidation. Studies in vivo and in vitro.
    Hovik R; Osmundsen H; Berge R; Aarsland A; Bergseth S; Bremer J
    Biochem J; 1990 Aug; 270(1):167-73. PubMed ID: 2396976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High concentrations of stavudine impair fatty acid oxidation without depleting mitochondrial DNA in cultured rat hepatocytes.
    Igoudjil A; Massart J; Begriche K; Descatoire V; Robin MA; Fromenty B
    Toxicol In Vitro; 2008 Jun; 22(4):887-98. PubMed ID: 18299183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Putting bioactivation reactions to work: Targeting antioxidants to mitochondria.
    Anders MW
    Chem Biol Interact; 2011 Jun; 192(1-2):8-13. PubMed ID: 20971100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.