These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 8292820)

  • 1. Steady-state gradient in calcium ion activity across the intercellular bridges connecting oocytes and nurse cells in Hyalophora cecropia.
    Woodruff RI; Telfer WH
    Arch Insect Biochem Physiol; 1994; 25(1):9-20. PubMed ID: 8292820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The osmolarity of adult Drosophila hemolymph and its effect on oocyte-nurse cell electrical polarity.
    Singleton K; Woodruff RI
    Dev Biol; 1994 Jan; 161(1):154-67. PubMed ID: 8293871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoplasmic transport in Drosophila ovarian follicles: the migration of microinjected fluorescent probes through intercellular bridges depends neither on electrical charge nor on external osmolarity.
    Bohrmann J; Schill S
    Int J Dev Biol; 1997 Jun; 41(3):499-507. PubMed ID: 9240567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge Dependent Distribution of Endogenous Proteins within Vitellogenic Ovarian Follicles of Actias luna.
    WOODRUFF RI; COLE RW
    J Insect Physiol; 1997 Mar; 43(3):275-287. PubMed ID: 12769912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitellogenic ovarian follicles of Drosophila exhibit a charge-dependent distribution of endogenous soluble proteins.
    Cole RW; Woodruff RI
    J Insect Physiol; 2000 Sep; 46(9):1239-1248. PubMed ID: 10844142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional contribution of major ions to the membrane potential of Drosophila melanogaster oocytes.
    Munley SM; Kinzeler S; Lizzano R; Woodruff RI
    Arch Insect Biochem Physiol; 2009 Apr; 70(4):230-43. PubMed ID: 19241411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca(2+)-activated K+ channel and the activation of Ca2+ influx in vanadate-treated red blood cells.
    Varecka L; Peterajová E; Sevcík J
    Gen Physiol Biophys; 1997 Dec; 16(4):339-57. PubMed ID: 9595303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonselective cationic currents activated by acetylcholine in swine tracheal smooth muscle cells.
    Yamashita T; Kokubun S
    Can J Physiol Pharmacol; 1999 Oct; 77(10):796-805. PubMed ID: 10588484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of ion-sensitive microelectrodes to study intracellular free magnesium concentration and its regulation in mammalian cardiac muscle.
    Hall SK; Fry CH; Buri A; McGuigan JA
    Magnes Trace Elem; 1991-1992; 10(2-4):80-9. PubMed ID: 1844564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gap junctions in ovarian follicles of Drosophila melanogaster: inhibition and promotion of dye-coupling between oocyte and follicle cells.
    Bohrmann J; Haas-Assenbaum A
    Cell Tissue Res; 1993 Jul; 273(1):163-73. PubMed ID: 8364958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. External Mg2+ triggers oscillations and a subsequent sustained level of intracellular free Ca2+, correlated with changes in membrane conductance in the oocyte of the prawn Palaemon serratus.
    Goudeau M; Goudeau H
    Dev Biol; 1996 Jul; 177(1):178-89. PubMed ID: 8660886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarized intercellular bridges in ovarian follicles of the cecropia moth.
    Woodruff RI; Telfer WH
    J Cell Biol; 1973 Jul; 58(1):172-88. PubMed ID: 4125369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of ion transport by the Na(+)-Ca2+,K+ exchange in rods isolated from the salamander retina.
    Perry RJ; McNaughton PA
    J Physiol; 1993 Jul; 466():443-80. PubMed ID: 8410702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelin-1 and vasopressin activate Ca(2+)-permeable non-selective cation channels in aortic smooth muscle cells: mechanism of receptor-mediated Ca2+ influx.
    Nakajima T; Hazama H; Hamada E; Wu SN; Igarashi K; Yamashita T; Seyama Y; Omata M; Kurachi Y
    J Mol Cell Cardiol; 1996 Apr; 28(4):707-22. PubMed ID: 8732499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of a new physiological state at the onset of vitellogenesis in Hyalophora follicles.
    Woodruff RI; Telfer WH
    Dev Biol; 1990 Apr; 138(2):410-20. PubMed ID: 1690675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Varied effects of 1-octanol on gap junctional communication between ovarian epithelial cells and oocytes of Oncopeltus fasciatus, Hyalophora cecropia, and Drosophila melanogaster.
    Adler EL; Woodruff RI
    Arch Insect Biochem Physiol; 2000 Jan; 43(1):22-32. PubMed ID: 10613960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion physiology of vitellogenic follicles.
    Telfer WH; Woodruff RI
    J Insect Physiol; 2002 Oct; 48(10):915-923. PubMed ID: 12770038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+ and Na+ current patterns during oocyte maturation, fertilization, and early developmental stages of Ciona intestinalis.
    Cuomo A; Silvestre F; De Santis R; Tosti E
    Mol Reprod Dev; 2006 Apr; 73(4):501-11. PubMed ID: 16425233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Granulosa cells regulate intracellular pH of the murine growing oocyte via gap junctions: development of independent homeostasis during oocyte growth.
    Fitzharris G; Baltz JM
    Development; 2006 Feb; 133(4):591-9. PubMed ID: 16407396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Granulosa cells regulate oocyte intracellular pH against acidosis in preantral follicles by multiple mechanisms.
    FitzHarris G; Siyanov V; Baltz JM
    Development; 2007 Dec; 134(23):4283-95. PubMed ID: 17978006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.