These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 8292831)

  • 41. Patterns of cell division during visual streak formation in the frog Limnodynastes dorsalis.
    Coleman LA; Dunlop SA; Beazley LD
    J Embryol Exp Morphol; 1984 Oct; 83():119-35. PubMed ID: 6502071
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitative evaluation of the distribution of proliferating cells in the adult retina in three cyprinid species.
    Cid E; Velasco A; Ciudad J; Orfao A; Aijón J; Lara JM
    Cell Tissue Res; 2002 Apr; 308(1):47-59. PubMed ID: 12012205
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Involvement of numb in vertebrate retinal development: evidence for multiple roles of numb in neural differentiation and maturation.
    Dooley CM; James J; Jane McGlade C; Ahmad I
    J Neurobiol; 2003 Feb; 54(2):313-25. PubMed ID: 12500307
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Increased progenitor cell proliferation and astrogenesis in the partial progressive 6-hydroxydopamine model of Parkinson's disease.
    Aponso PM; Faull RL; Connor B
    Neuroscience; 2008 Feb; 151(4):1142-53. PubMed ID: 18201835
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Runx1 expression defines a subpopulation of displaced amacrine cells in the developing mouse retina.
    Stewart L; Potok MA; Camper SA; Stifani S
    J Neurochem; 2005 Sep; 94(6):1739-45. PubMed ID: 16026391
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vivo characterization of astrocyte precursor cells (APCs) and astrocytes in developing rat retinae: differentiation, proliferation, and apoptosis.
    Chan-Ling T; Chu Y; Baxter L; Weible Ii M; Hughes S
    Glia; 2009 Jan; 57(1):39-53. PubMed ID: 18661555
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Formation and reorganization of the early photoreception area in the eyes of sturgeon embryos and prelarvae. Radioautographic study].
    Baburina EA; Mitashov VI; Sinitsina VF; Lobacheva VA
    Ontogenez; 1977; 8(5):468-77. PubMed ID: 909681
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina.
    Yoshii C; Ueda Y; Okamoto M; Araki M
    Dev Biol; 2007 Mar; 303(1):45-56. PubMed ID: 17184765
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Two healing patterns correlate with different adult neural connectivity patterns in regenerating embryonic Xenopus retina.
    Ide CF; Reynolds P; Tompkins R
    J Exp Zool; 1984 Apr; 230(1):71-80. PubMed ID: 6726148
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of the vascular endothelial growth factor isoforms in retinal angiogenesis and DiGeorge syndrome.
    Stalmans I
    Verh K Acad Geneeskd Belg; 2005; 67(4):229-76. PubMed ID: 16334858
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multilayered retinal microglial response to optic nerve transection in rats.
    Garcia-Valenzuela E; Sharma SC; Piña AL
    Mol Vis; 2005 Mar; 11():225-31. PubMed ID: 15827548
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Retinal patterning in the zebrafish mutant cyclops.
    Fulwiler C; Schmitt EA; Kim JM; Dowling JE
    J Comp Neurol; 1997 May; 381(4):449-60. PubMed ID: 9136802
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differences in the decrease in regenerative capacity of various brain regions of Xenopus laevis are related to differences in the undifferentiated cell populations.
    Filoni S; Bernardini S; Cannata SM
    J Hirnforsch; 1995; 36(4):523-9. PubMed ID: 8568223
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cell movement and cell cycle dynamics in the retina of the adult teleost Haplochromis burtoni.
    Mack AF; Fernald RD
    J Comp Neurol; 1997 Nov; 388(3):435-43. PubMed ID: 9368851
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An autoradiographic time study during regeneration in fully differentiated Xenopus eyes.
    Underwood LW; Ide CF
    J Exp Zool; 1992 May; 262(2):193-201. PubMed ID: 1583462
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Late proliferation and photoreceptor differentiation in the transforming lamprey retina.
    Villar-Cheda B; Abalo XM; Villar-Cerviño V; Barreiro-Iglesias A; Anadón R; Rodicio MC
    Brain Res; 2008 Mar; 1201():60-7. PubMed ID: 18295752
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages.
    McCarter J; Bartlett B; Dang T; Schedl T
    Dev Biol; 1997 Jan; 181(2):121-43. PubMed ID: 9013925
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of the crayfish retina: a light and electron microscopic study.
    Hafner GS; Tokarski T; Hammond-Soltis G
    J Morphol; 1982 Jul; 173(1):101-8. PubMed ID: 7108965
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Healing modes correlate with visuotectal pattern formation in regenerating embryonic Xenopus retina.
    Ide CF; Wunsh LM; Lecat PJ; Kahn D; Noelke EL
    Dev Biol; 1987 Dec; 124(2):316-30. PubMed ID: 3678599
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cellular determination in the Xenopus retina is independent of lineage and birth date.
    Holt CE; Bertsch TW; Ellis HM; Harris WA
    Neuron; 1988 Mar; 1(1):15-26. PubMed ID: 3272153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.