These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8293261)

  • 1. Selection of anti-scatter grids for different imaging tasks: the advantage of low atomic number cover and interspace materials.
    Sandborg M; Dance DR; Carlsson GA; Persliden J
    Br J Radiol; 1993 Dec; 66(792):1151-63. PubMed ID: 8293261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo study of grid performance in diagnostic radiology: task dependent optimization for screen-film imaging.
    Sandborg M; Dance DR; Carlsson GA; Persliden J
    Br J Radiol; 1994 Jan; 67(793):76-85. PubMed ID: 8298879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo study of grid performance in diagnostic radiology: factors which affect the selection of tube potential and grid ratio.
    Sandborg M; Dance DR; Carlsson GA; Persliden J
    Br J Radiol; 1993 Dec; 66(792):1164-76. PubMed ID: 8293262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of carbon fibre material in radiographic cassettes: estimation of the dose and contrast advantages.
    Dance DR; Lester SA; Carlsson GA; Sandborg M; Persliden J
    Br J Radiol; 1997 Apr; 70(832):383-90. PubMed ID: 9166075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Monte Carlo study of grid performance in diagnostic radiology: task-dependent optimization for digital imaging.
    Sandborg M; Dance DR; Carlsson GA; Persliden J; Tapiovaara MJ
    Phys Med Biol; 1994 Oct; 39(10):1659-76. PubMed ID: 15551537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the performance of antiscatter grids: Monte Carlo simulation studies.
    Chan HP; Doi K
    Phys Med Biol; 1982 Jun; 27(6):785-803. PubMed ID: 7111390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-ratio grid considerations in mobile chest radiography.
    Scott AW; Gauntt DM; Yester MV; Barnes GT
    Med Phys; 2012 Jun; 39(6):3142-53. PubMed ID: 22755699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical note: a comparison of antiscatter grids for digital radiography.
    Court L; Yamazaki T
    Br J Radiol; 2004 Nov; 77(923):950-2. PubMed ID: 15507421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Monte Carlo program for the calculation of contrast, noise and absorbed dose in diagnostic radiology.
    Sandborg M; Dance DR; Persliden J; Carlsson GA
    Comput Methods Programs Biomed; 1994 Mar; 42(3):167-80. PubMed ID: 8062549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evaluation of fiber-interspaced antiscatter grids for large patient imaging with digital x-ray systems.
    Fetterly KA; Schueler BA
    Phys Med Biol; 2007 Aug; 52(16):4863-80. PubMed ID: 17671340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of anti-scatter grids on the image improvement factor in digital radiography for various phantom thicknesses and irradiation fields.
    Tanaka N; Yoon Y
    Phys Eng Sci Med; 2023 Sep; 46(3):1187-1192. PubMed ID: 37336831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative dose efficiencies of antiscatter grids and air gaps in pediatric radiography.
    McDaniel DL; Cohen G; Wagner LK; Robinson LH
    Med Phys; 1984; 11(4):508-12. PubMed ID: 6482846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined analytical and Monte Carlo method for detailed simulations of antiscatter grids in x-ray medical imaging: implementing scatter within the grid.
    Massera RT; Bosmans H; Rodriguez Perez S; Marshall N
    Phys Med Biol; 2024 Mar; 69(7):. PubMed ID: 38382108
    [No Abstract]   [Full Text] [Related]  

  • 14. Scatter dose calculation for anti-scatter linear grids in mammography.
    Al Kafi MA; Maalej N; Naqvi AA
    Appl Radiat Isot; 2009 Oct; 67(10):1837-41. PubMed ID: 19632851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal-to-noise ratio improvements using anti-scatter grids with different object thicknesses and tube voltages.
    Kunitomo H; Ichikawa K
    Phys Med; 2020 May; 73():105-110. PubMed ID: 32353690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study and optimization of lumbar spine X-ray imaging systems.
    McVey G; Sandborg M; Dance DR; Alm Carlsson G
    Br J Radiol; 2003 Mar; 76(903):177-88. PubMed ID: 12684233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of high-strip density anti-scatter grid on image quality and radiation dose].
    Wamser G; Maier W; Aichinger H; Bohndorf K
    Rofo; 1997 Jun; 166(6):475-80. PubMed ID: 9272997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of scatter-to-primary ratio, grid performance and normalized average glandular dose in mammography by Monte Carlo simulation including interference and energy broadening effects.
    Cunha DM; Tomal A; Poletti ME
    Phys Med Biol; 2010 Aug; 55(15):4335-59. PubMed ID: 20647608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-high-strip-density radiographic grids: a new antiscatter technique for mammography.
    Chan HP; Frank PH; Doi K; Iida N; Higashida Y
    Radiology; 1985 Mar; 154(3):807-15. PubMed ID: 3969487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning slit chest radiography: a practical and efficient scatter control design.
    Barnes GT; Wu X; Sanders PC
    Radiology; 1994 Feb; 190(2):525-8. PubMed ID: 8284410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.