These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8293526)

  • 1. Post-aromatic deoxygenation in polyketide biosynthesis: reduction of aromatic rings in the biosyntheses of fungal melanin and anthraquinone.
    Ichinose K; Kiyono J; Ebizuka Y; Sankawa U
    Chem Pharm Bull (Tokyo); 1993 Nov; 41(11):2015-21. PubMed ID: 8293526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tautomers of anthrahydroquinones: enzymatic reduction and implications for chrysophanol, monodictyphenone, and related xanthone biosyntheses.
    Schätzle MA; Husain SM; Ferlaino S; Müller M
    J Am Chem Soc; 2012 Sep; 134(36):14742-5. PubMed ID: 22909031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyketide Trimming Shapes Dihydroxynaphthalene-Melanin and Anthraquinone Pigments.
    Schmalhofer M; Vagstad AL; Zhou Q; Bode HB; Groll M
    Adv Sci (Weinh); 2024 Jun; 11(22):e2400184. PubMed ID: 38491909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of cladofulvin biosynthesis reveals a cytochrome P450 monooxygenase required for anthraquinone dimerization.
    Griffiths S; Mesarich CH; Saccomanno B; Vaisberg A; De Wit PJ; Cox R; Collemare J
    Proc Natl Acad Sci U S A; 2016 Jun; 113(25):6851-6. PubMed ID: 27274078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different polyketide folding modes converge to an identical molecular architecture.
    Bringmann G; Noll TF; Gulder TA; Grüne M; Dreyer M; Wilde C; Pankewitz F; Hilker M; Payne GD; Jones AL; Goodfellow M; Fiedler HP
    Nat Chem Biol; 2006 Aug; 2(8):429-33. PubMed ID: 16829953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic studies on the biomimetic reduction of tetrahydroxynaphthalene, a key intermediate in melanin biosynthesis.
    Ichinose K; Ebizuka Y; Sankawa U
    Chem Pharm Bull (Tokyo); 2001 Feb; 49(2):192-6. PubMed ID: 11217108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Fungal anthraquinones (review)].
    Gessler NN; Egorova AS; Belozerskaia TA
    Prikl Biokhim Mikrobiol; 2013; 49(2):109-23. PubMed ID: 23795468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Melanin pigments of fungi under extreme environmental conditions (review)].
    Gessler NN; Egorova AS; Belozerskaia TA
    Prikl Biokhim Mikrobiol; 2014; 50(2):125-34. PubMed ID: 25272728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for involvement of two naphthol reductases in the first reduction step of melanin biosynthesis pathway of Colletotrichum lagenarium.
    Tsuji G; Sugahara T; Fujii I; Mori Y; Ebizuka Y; Shiraishi T; Kubo Y
    Mycol Res; 2003 Jul; 107(Pt 7):854-60. PubMed ID: 12967213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival.
    Al-Laaeiby A; Kershaw MJ; Penn TJ; Thornton CR
    Int J Mol Sci; 2016 Mar; 17(4):444. PubMed ID: 27023523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of the biosynthetic pathway to agnestins A and B reveals the reductive route to chrysophanol in fungi.
    Szwalbe AJ; Williams K; Song Z; de Mattos-Shipley K; Vincent JL; Bailey AM; Willis CL; Cox RJ; Simpson TJ
    Chem Sci; 2019 Jan; 10(1):233-238. PubMed ID: 30746079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linking secondary metabolites to biosynthesis genes in the fungal endophyte Cyanodermella asteris: The anti-cancer bisanthraquinone skyrin.
    Jahn L; Schafhauser T; Wibberg D; Rückert C; Winkler A; Kulik A; Weber T; Flor L; van Pée KH; Kalinowski J; Ludwig-Müller J; Wohlleben W
    J Biotechnol; 2017 Sep; 257():233-239. PubMed ID: 28647529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal melanins and their interactions with metals.
    Fogarty RV; Tobin JM
    Enzyme Microb Technol; 1996 Sep; 19(4):311-7. PubMed ID: 8987489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro glucuronidation of five rhubarb anthraquinones by intestinal and liver microsomes from humans and rats.
    Wu W; Hu N; Zhang Q; Li Y; Li P; Yan R; Wang Y
    Chem Biol Interact; 2014 Aug; 219():18-27. PubMed ID: 24854283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel anthraquinone ring cleavage enzyme from Aspergillus terreus.
    Fujii I; Ebizuka Y; Sankawa U
    J Biochem; 1988 May; 103(5):878-83. PubMed ID: 3182756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial production of melanin and its various applications.
    Tran-Ly AN; Reyes C; Schwarze FWMR; Ribera J
    World J Microbiol Biotechnol; 2020 Oct; 36(11):170. PubMed ID: 33043393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal Bioactive Anthraquinones and Analogues.
    Masi M; Evidente A
    Toxins (Basel); 2020 Nov; 12(11):. PubMed ID: 33198270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A second reductase gene involved in melanin biosynthesis in the sap-staining fungus Ophiostoma floccosum.
    Wang HL; Breuil C
    Mol Genet Genomics; 2002 Jul; 267(5):557-63. PubMed ID: 12172794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei.
    Woo PC; Tam EW; Chong KT; Cai JJ; Tung ET; Ngan AH; Lau SK; Yuen KY
    FEBS J; 2010 Sep; 277(18):3750-8. PubMed ID: 20718860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyhydroxynaphthalene reductase involved in melanin biosynthesis in Magnaporthe grisea. Purification, cDNA cloning and sequencing.
    Vidal-Cros A; Viviani F; Labesse G; Boccara M; Gaudry M
    Eur J Biochem; 1994 Feb; 219(3):985-92. PubMed ID: 8112349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.