BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 8293530)

  • 1. Particle size effect of metastable calcium phosphates on crushing strength of self-setting bioactive calcium phosphate cement.
    Otsuka M; Matsuda Y; Suwa Y; Fox JL; Higuchi WI
    Chem Pharm Bull (Tokyo); 1993 Nov; 41(11):2055-7. PubMed ID: 8293530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of particle size of metastable calcium phosphates on mechanical strength of a novel self-setting bioactive calcium phosphate cement.
    Otsuka M; Matsuda Y; Suwa Y; Fox JL; Higuchi WI
    J Biomed Mater Res; 1995 Jan; 29(1):25-32. PubMed ID: 7713955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the granularity of raw materials on the hydration and hardening process of calcium phosphate cement.
    Liu C; Shao H; Chen F; Zheng H
    Biomaterials; 2003 Oct; 24(23):4103-13. PubMed ID: 12853240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-setting, bioactive, and biodegradable TTCP-DCPD apatite cement.
    Hamanishi C; Kitamoto K; Ohura K; Tanaka S; Doi Y
    J Biomed Mater Res; 1996 Nov; 32(3):383-9. PubMed ID: 8897143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of hydroxyapatite in new calcium phosphate cements.
    Takagi S; Chow LC; Ishikawa K
    Biomaterials; 1998 Sep; 19(17):1593-9. PubMed ID: 9830985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Setting reaction and hardening of an apatitic calcium phosphate cement.
    Ginebra MP; Fernández E; De Maeyer EA; Verbeeck RM; Boltong MG; Ginebra J; Driessens FC; Planell JA
    J Dent Res; 1997 Apr; 76(4):905-12. PubMed ID: 9126187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Setting, hardening and resorption of calcium phosphate hydraulic cements.
    Lemaitre J; Munting E; Mirtchi AA
    Rev Stomatol Chir Maxillofac; 1992; 93(3):163-5. PubMed ID: 1323872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Setting mechanism of a new injectable Dicalcium Phosphate Dihydrate (DCPD) forming cement.
    Ren W; Song W; Yurgelevic S; Markel DC
    J Mech Behav Biomed Mater; 2018 Mar; 79():226-234. PubMed ID: 29331590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the physicochemical properties of dicalcium phosphate dihydrate (DCPD) and polymeric DCPD (P-DCPD) cement particles.
    Barua R; Daly-Seiler CS; Chenreghanianzabi Y; Markel D; Li Y; Zhou M; Ren W
    J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1644-1655. PubMed ID: 33655715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation.
    Alge DL; Santa Cruz G; Goebel WS; Chu TM
    Biomed Mater; 2009 Apr; 4(2):025016. PubMed ID: 19349655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the calcium to phosphate ratio of tetracalcium phosphate on the properties of calcium phosphate bone cement.
    Burguera EF; Guitian F; Chow LC
    J Biomed Mater Res A; 2008 Jun; 85(3):674-83. PubMed ID: 17876802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmission electron microscopic study on setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cement.
    Chen WC; Lin JH; Ju CP
    J Biomed Mater Res A; 2003 Mar; 64(4):664-71. PubMed ID: 12601778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of powder grinding on hydroxyapatite formation in a polymeric calcium phosphate cement prepared from tetracalcium phosphate and poly(methyl vinyl ether-maleic acid).
    Matsuya Y; Matsuya S; Antonucci JM; Takagi S; Chow LC; Akamine A
    Biomaterials; 1999 Apr; 20(7):691-7. PubMed ID: 10208412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The formation of hydroxyapatite-ionomer cements at 38 degrees C.
    TenHuisen KS; Brown PW
    J Dent Res; 1994 Mar; 73(3):598-606. PubMed ID: 8163730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Studies on physico-chemical properties of self-setting apatite cement].
    Takezawa Y
    Gifu Shika Gakkai Zasshi; 1989 Dec; 16(2):500-19. PubMed ID: 2562262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymeric calcium phosphate cements derived from poly(methyl vinyl ether-maleic acid).
    Matsuya Y; Antonucci JM; Matsuya S; Takagi S; Chow LC
    Dent Mater; 1996 Jan; 12(1):2-7. PubMed ID: 8598246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A water setting tetracalcium phosphate-dicalcium phosphate dihydrate cement.
    Burguera EF; Guitián F; Chow LC
    J Biomed Mater Res A; 2004 Nov; 71(2):275-82. PubMed ID: 15386489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolysis of tetracalcium phosphate under a near-constant-composition condition--effects of pH and particle size.
    Chow LC; Markovic M; Frukhtbeyn SA; Takagi S
    Biomaterials; 2005 Feb; 26(4):393-401. PubMed ID: 15275813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface properties of calcium phosphate particles for self setting bone cements.
    Gbureck U; Probst J; Thull R
    Biomol Eng; 2002 Aug; 19(2-6):51-5. PubMed ID: 12202161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming growth factor-beta1 incorporation in an alpha-tricalcium phosphate/dicalcium phosphate dihydrate/tetracalcium phosphate monoxide cement: release characteristics and physicochemical properties.
    Blom EJ; Klein-Nulend J; Wolke JG; Kurashina K; van Waas MA; Burger EH
    Biomaterials; 2002 Feb; 23(4):1261-8. PubMed ID: 11794323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.