These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 8293530)

  • 41. Development of a novel cement by conversion of hopeite in set zinc phosphate cement into biocompatible apatite.
    Horiuchi S; Asaoka K; Tanaka E
    Biomed Mater Eng; 2009; 19(2-3):121-31. PubMed ID: 19581705
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Brushite-based calcium phosphate cement with multichannel hydroxyapatite granule loading for improved bone regeneration.
    Sarkar SK; Lee BY; Padalhin AR; Sarker A; Carpena N; Kim B; Paul K; Choi HJ; Bae SH; Lee BT
    J Biomater Appl; 2016 Jan; 30(6):823-37. PubMed ID: 26333790
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel skeletal drug-delivery system using self-setting calcium phosphate cement. 3. Physicochemical properties and drug-release rate of bovine insulin and bovine albumin.
    Otsuka M; Matsuda Y; Suwa Y; Fox JL; Higuchi WI
    J Pharm Sci; 1994 Feb; 83(2):255-8. PubMed ID: 8169800
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calcium phosphate cements.
    Chow LC
    Monogr Oral Sci; 2001; 18():148-63. PubMed ID: 11758446
    [No Abstract]   [Full Text] [Related]  

  • 45. Physical, mechanical and in vitro evaluation of a novel cement based on akermantite and dicalcium phosphate dihydrate phase.
    Sopcak T; Medvecky L; Giretova M; Stulajterova R; Molcanova Z; Podobova M; Girman V
    Biomed Mater; 2019 May; 14(4):045011. PubMed ID: 31134897
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism of the hardening process for a hydroxyapatite cement.
    Liu C; Shen W; Gu Y; Hu L
    J Biomed Mater Res; 1997 Apr; 35(1):75-80. PubMed ID: 9104699
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Calcium phosphate cements: study of the beta-tricalcium phosphate--dicalcium phosphate--calcite cements.
    Mirtchi AA; LemaƮtre J; Munting E
    Biomaterials; 1990 Mar; 11(2):83-8. PubMed ID: 2156575
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Strong and bioactive composites containing nano-silica-fused whiskers for bone repair.
    Xu HH; Smith DT; Simon CG
    Biomaterials; 2004 Aug; 25(19):4615-26. PubMed ID: 15120507
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo study of calcium phosphate cements: implantation of an alpha-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement paste.
    Kurashina K; Kurita H; Hirano M; Kotani A; Klein CP; de Groot K
    Biomaterials; 1997 Apr; 18(7):539-43. PubMed ID: 9105593
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solubility of dicalcium phosphate dihydrate by solid titration.
    Pan HB; Darvell BW
    Caries Res; 2009; 43(4):254-60. PubMed ID: 19439946
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of impedance spectroscopy to evaluate the effect of different setting accelerators on the developed microstructures of calcium phosphate cements.
    Romeo HE; Bueno PR; Fanovich MA
    J Mater Sci Mater Med; 2009 Aug; 20(8):1619-27. PubMed ID: 19347256
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cement from nanocrystalline hydroxyapatite: effect of calcium phosphate ratio.
    Lilley KJ; Gbureck U; Wright AJ; Farrar DF; Barralet JE
    J Mater Sci Mater Med; 2005 Dec; 16(12):1185-90. PubMed ID: 16362220
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biphasic products of dicalcium phosphate-rich cement with injectability and nondispersibility.
    Ko CL; Chen JC; Hung CC; Wang JC; Tien YC; Chen WC
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():40-6. PubMed ID: 24863195
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel chelate-setting calcium-phosphate cements fabricated with wet-synthesized hydroxyapatite powder.
    Konishi T; Horiguchi Y; Mizumoto M; Honda M; Oribe K; Morisue H; Ishii K; Toyama Y; Matsumoto M; Aizawa M
    J Mater Sci Mater Med; 2013 Mar; 24(3):611-21. PubMed ID: 23229575
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Morphological and phase characterizations of retrieved calcium phosphate cement implants.
    Takagi S; Chow LC; Markovic M; Friedman CD; Costantino PD
    J Biomed Mater Res; 2001; 58(1):36-41. PubMed ID: 11152995
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-setting kinetics of new type calcium phosphate bioactive bone cement: a thermokinetics study.
    Zhou X; Wang CX; Zheng CQ; Zeng XC
    Biomed Mater Eng; 2003; 13(3):197-203. PubMed ID: 12883169
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The in vitro and in vivo indomethacin release from self-setting bioactive glass bone cement.
    Otsuka M; Nakahigashi Y; Matsuda Y; Kokubo T; Yoshihara S; Fujita H; Nakamura T
    Biomed Mater Eng; 1997; 7(5):291-302. PubMed ID: 9457380
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.
    Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC
    J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Particle attrition of alpha-tricalcium phosphate: effect on mechanical, handling, and injectability properties of calcium phosphate cements.
    Jack V; Buchanan FJ; Dunne NJ
    Proc Inst Mech Eng H; 2008 Jan; 222(1):19-28. PubMed ID: 18335715
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improvement of physical properties of calcium phosphate cement by elastin-like polypeptide supplementation.
    Jang JH; Shin S; Kim HJ; Jeong J; Jin HE; Desai MS; Lee SW; Kim SY
    Sci Rep; 2018 Mar; 8(1):5216. PubMed ID: 29581559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.