These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 8293971)
1. Genetic and molecular characterization of GAL83: its interaction and similarities with other genes involved in glucose repression in Saccharomyces cerevisiae. Erickson JR; Johnston M Genetics; 1993 Nov; 135(3):655-64. PubMed ID: 8293971 [TBL] [Abstract][Full Text] [Related]
2. Suppressors reveal two classes of glucose repression genes in the yeast Saccharomyces cerevisiae. Erickson JR; Johnston M Genetics; 1994 Apr; 136(4):1271-8. PubMed ID: 8013904 [TBL] [Abstract][Full Text] [Related]
3. SIP1 is a catabolite repression-specific negative regulator of GAL gene expression. Mylin LM; Bushman VL; Long RM; Yu X; Lebo CM; Blank TE; Hopper JE Genetics; 1994 Jul; 137(3):689-700. PubMed ID: 8088514 [TBL] [Abstract][Full Text] [Related]
4. A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex. Yang X; Jiang R; Carlson M EMBO J; 1994 Dec; 13(24):5878-86. PubMed ID: 7813428 [TBL] [Abstract][Full Text] [Related]
5. The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth. Frederick DL; Tatchell K Mol Cell Biol; 1996 Jun; 16(6):2922-31. PubMed ID: 8649403 [TBL] [Abstract][Full Text] [Related]
6. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Jiang R; Carlson M Mol Cell Biol; 1997 Apr; 17(4):2099-106. PubMed ID: 9121458 [TBL] [Abstract][Full Text] [Related]
7. FOG1 and FOG2 genes, required for the transcriptional activation of glucose-repressible genes of Kluyveromyces lactis, are homologous to GAL83 and SNF1 of saccharomyces cerevisiae. Goffrini P; Ficarelli A; Donnini C; Lodi T; Puglisi PP; Ferrero I Curr Genet; 1996 Mar; 29(4):316-26. PubMed ID: 8598052 [TBL] [Abstract][Full Text] [Related]
8. Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase. Hedbacker K; Hong SP; Carlson M Mol Cell Biol; 2004 Sep; 24(18):8255-63. PubMed ID: 15340085 [TBL] [Abstract][Full Text] [Related]
9. Two systems of glucose repression of the GAL1 promoter in Saccharomyces cerevisiae. Flick JS; Johnston M Mol Cell Biol; 1990 Sep; 10(9):4757-69. PubMed ID: 2201902 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterization of dominant mutations resistant to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae. Matsumoto K; Toh-e A; Oshima Y Mol Cell Biol; 1981 Feb; 1(2):83-93. PubMed ID: 6765598 [TBL] [Abstract][Full Text] [Related]
11. The beta-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis. Zhang J; Olsson L; Nielsen J Mol Microbiol; 2010 Jul; 77(2):371-83. PubMed ID: 20545859 [TBL] [Abstract][Full Text] [Related]
12. Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4. Vincent O; Carlson M EMBO J; 1999 Dec; 18(23):6672-81. PubMed ID: 10581241 [TBL] [Abstract][Full Text] [Related]
13. Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae. Matsumoto K; Yoshimatsu T; Oshima Y J Bacteriol; 1983 Mar; 153(3):1405-14. PubMed ID: 6337998 [TBL] [Abstract][Full Text] [Related]
14. Snf1 kinases with different beta-subunit isoforms play distinct roles in regulating haploid invasive growth. Vyas VK; Kuchin S; Berkey CD; Carlson M Mol Cell Biol; 2003 Feb; 23(4):1341-8. PubMed ID: 12556493 [TBL] [Abstract][Full Text] [Related]
15. Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon. Zenke FT; Zachariae W; Lunkes A; Breunig KD Mol Cell Biol; 1993 Dec; 13(12):7566-76. PubMed ID: 8246973 [TBL] [Abstract][Full Text] [Related]
16. Genetic and carbon source regulation of phosphorylation of Sip1p, a Snf1p-associated protein involved in carbon response in Saccharomyces cerevisiae. Long RM; Hopper JE Yeast; 1995 Mar; 11(3):233-46. PubMed ID: 7785324 [TBL] [Abstract][Full Text] [Related]
17. Characterization of TUP1, a mediator of glucose repression in Saccharomyces cerevisiae. Williams FE; Trumbly RJ Mol Cell Biol; 1990 Dec; 10(12):6500-11. PubMed ID: 2247069 [TBL] [Abstract][Full Text] [Related]
18. Mutations in GSF1 and GSF2 alter glucose signaling in Saccharomyces cerevisiae. Sherwood PW; Carlson M Genetics; 1997 Oct; 147(2):557-66. PubMed ID: 9335593 [TBL] [Abstract][Full Text] [Related]
19. Functional analysis of the yeast Glc7-binding protein Reg1 identifies a protein phosphatase type 1-binding motif as essential for repression of ADH2 expression. Dombek KM; Voronkova V; Raney A; Young ET Mol Cell Biol; 1999 Sep; 19(9):6029-40. PubMed ID: 10454550 [TBL] [Abstract][Full Text] [Related]
20. Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase. Hedbacker K; Carlson M Eukaryot Cell; 2006 Dec; 5(12):1950-6. PubMed ID: 17071825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]