BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 8293971)

  • 1. Genetic and molecular characterization of GAL83: its interaction and similarities with other genes involved in glucose repression in Saccharomyces cerevisiae.
    Erickson JR; Johnston M
    Genetics; 1993 Nov; 135(3):655-64. PubMed ID: 8293971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppressors reveal two classes of glucose repression genes in the yeast Saccharomyces cerevisiae.
    Erickson JR; Johnston M
    Genetics; 1994 Apr; 136(4):1271-8. PubMed ID: 8013904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIP1 is a catabolite repression-specific negative regulator of GAL gene expression.
    Mylin LM; Bushman VL; Long RM; Yu X; Lebo CM; Blank TE; Hopper JE
    Genetics; 1994 Jul; 137(3):689-700. PubMed ID: 8088514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex.
    Yang X; Jiang R; Carlson M
    EMBO J; 1994 Dec; 13(24):5878-86. PubMed ID: 7813428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth.
    Frederick DL; Tatchell K
    Mol Cell Biol; 1996 Jun; 16(6):2922-31. PubMed ID: 8649403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex.
    Jiang R; Carlson M
    Mol Cell Biol; 1997 Apr; 17(4):2099-106. PubMed ID: 9121458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FOG1 and FOG2 genes, required for the transcriptional activation of glucose-repressible genes of Kluyveromyces lactis, are homologous to GAL83 and SNF1 of saccharomyces cerevisiae.
    Goffrini P; Ficarelli A; Donnini C; Lodi T; Puglisi PP; Ferrero I
    Curr Genet; 1996 Mar; 29(4):316-26. PubMed ID: 8598052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase.
    Hedbacker K; Hong SP; Carlson M
    Mol Cell Biol; 2004 Sep; 24(18):8255-63. PubMed ID: 15340085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two systems of glucose repression of the GAL1 promoter in Saccharomyces cerevisiae.
    Flick JS; Johnston M
    Mol Cell Biol; 1990 Sep; 10(9):4757-69. PubMed ID: 2201902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of dominant mutations resistant to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae.
    Matsumoto K; Toh-e A; Oshima Y
    Mol Cell Biol; 1981 Feb; 1(2):83-93. PubMed ID: 6765598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The beta-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis.
    Zhang J; Olsson L; Nielsen J
    Mol Microbiol; 2010 Jul; 77(2):371-83. PubMed ID: 20545859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4.
    Vincent O; Carlson M
    EMBO J; 1999 Dec; 18(23):6672-81. PubMed ID: 10581241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae.
    Matsumoto K; Yoshimatsu T; Oshima Y
    J Bacteriol; 1983 Mar; 153(3):1405-14. PubMed ID: 6337998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Snf1 kinases with different beta-subunit isoforms play distinct roles in regulating haploid invasive growth.
    Vyas VK; Kuchin S; Berkey CD; Carlson M
    Mol Cell Biol; 2003 Feb; 23(4):1341-8. PubMed ID: 12556493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon.
    Zenke FT; Zachariae W; Lunkes A; Breunig KD
    Mol Cell Biol; 1993 Dec; 13(12):7566-76. PubMed ID: 8246973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and carbon source regulation of phosphorylation of Sip1p, a Snf1p-associated protein involved in carbon response in Saccharomyces cerevisiae.
    Long RM; Hopper JE
    Yeast; 1995 Mar; 11(3):233-46. PubMed ID: 7785324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of TUP1, a mediator of glucose repression in Saccharomyces cerevisiae.
    Williams FE; Trumbly RJ
    Mol Cell Biol; 1990 Dec; 10(12):6500-11. PubMed ID: 2247069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in GSF1 and GSF2 alter glucose signaling in Saccharomyces cerevisiae.
    Sherwood PW; Carlson M
    Genetics; 1997 Oct; 147(2):557-66. PubMed ID: 9335593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of the yeast Glc7-binding protein Reg1 identifies a protein phosphatase type 1-binding motif as essential for repression of ADH2 expression.
    Dombek KM; Voronkova V; Raney A; Young ET
    Mol Cell Biol; 1999 Sep; 19(9):6029-40. PubMed ID: 10454550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase.
    Hedbacker K; Carlson M
    Eukaryot Cell; 2006 Dec; 5(12):1950-6. PubMed ID: 17071825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.