BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 8294427)

  • 1. Interaction of the bHLH-zip domain of c-Myc with H1-type peptides. Characterization of helicity in the H1 peptides by NMR.
    Draeger LJ; Mullen GP
    J Biol Chem; 1994 Jan; 269(3):1785-93. PubMed ID: 8294427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of cancer cell growth and c-Myc transcriptional activity by a c-Myc helix 1-type peptide fused to an internalization sequence.
    Giorello L; Clerico L; Pescarolo MP; Vikhanskaya F; Salmona M; Colella G; Bruno S; Mancuso T; Bagnasco L; Russo P; Parodi S
    Cancer Res; 1998 Aug; 58(16):3654-9. PubMed ID: 9721875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferential heterodimeric parallel coiled-coil formation by synthetic Max and c-Myc leucine zippers: a description of putative electrostatic interactions responsible for the specificity of heterodimerization.
    Lavigne P; Kondejewski LH; Houston ME; Sönnichsen FD; Lix B; Skyes BD; Hodges RS; Kay CM
    J Mol Biol; 1995 Dec; 254(3):505-20. PubMed ID: 7490766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A retro-inverso peptide homologous to helix 1 of c-Myc is a potent and specific inhibitor of proliferation in different cellular systems.
    Pescarolo MP; Bagnasco L; Malacarne D; Melchiori A; Valente P; Millo E; Bruno S; Basso S; Parodi S
    FASEB J; 2001 Jan; 15(1):31-33. PubMed ID: 11099487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence specific peptidomimetic molecules inhibitors of a protein-protein interaction at the helix 1 level of c-Myc.
    Nieddu E; Melchiori A; Pescarolo MP; Bagnasco L; Biasotti B; Licheri B; Malacarne D; Tortolina L; Castagnino N; Pasa S; Cimoli G; Avignolo C; Ponassi R; Balbi C; Patrone E; D'arrigo C; Barboro P; Vasile F; Orecchia P; Carnemolla B; Damonte G; Millo E; Palomba D; Fassina G; Mazzei M; Parodi S
    FASEB J; 2005 Apr; 19(6):632-4. PubMed ID: 15671156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the Myc and Max interaction specificity with lambda repressor-HLH domain fusions.
    Marchetti A; Abril-Marti M; Illi B; Cesareni G; Nasi S
    J Mol Biol; 1995 May; 248(3):541-50. PubMed ID: 7752223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and properties of a Myc derivative that efficiently homodimerizes.
    Soucek L; Helmer-Citterich M; Sacco A; Jucker R; Cesareni G; Nasi S
    Oncogene; 1998 Nov; 17(19):2463-72. PubMed ID: 9824157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc.
    Blackwood EM; Eisenman RN
    Science; 1991 Mar; 251(4998):1211-7. PubMed ID: 2006410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The leucine zippers of the HLH-LZ proteins Max and c-Myc preferentially form heterodimers.
    Muhle-Goll C; Nilges M; Pastore A
    Biochemistry; 1995 Oct; 34(41):13554-64. PubMed ID: 7577944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural constraints for DNA recognition by Myc and other b-HLH-ZIP proteins: design of oncoprotein analogues.
    Takemoto C; Fisher DE
    Gene Expr; 1995; 4(6):311-7. PubMed ID: 7549463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the DNA sequence recognized by the bHLH-zip domain of the N-Myc protein.
    Alex R; Sözeri O; Meyer S; Dildrop R
    Nucleic Acids Res; 1992 May; 20(9):2257-63. PubMed ID: 1594445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif.
    Hurlin PJ; Steingrìmsson E; Copeland NG; Jenkins NA; Eisenman RN
    EMBO J; 1999 Dec; 18(24):7019-28. PubMed ID: 10601024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct DNA binding preferences for the c-Myc/Max and Max/Max dimers.
    Solomon DL; Amati B; Land H
    Nucleic Acids Res; 1993 Nov; 21(23):5372-6. PubMed ID: 8265351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dimerization stability of the HLH-LZ transcription protein family is modulated by the leucine zippers: a CD and NMR study of TFEB and c-Myc.
    Muhle-Goll C; Gibson T; Schuck P; Schubert D; Nalis D; Nilges M; Pastore A
    Biochemistry; 1994 Sep; 33(37):11296-306. PubMed ID: 7727380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mmip1: a novel leucine zipper protein that reverses the suppressive effects of Mad family members on c-myc.
    Gupta K; Anand G; Yin X; Grove L; Prochownik EV
    Oncogene; 1998 Mar; 16(9):1149-59. PubMed ID: 9528857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variant Max protein, derived by alternative splicing, associates with c-Myc in vivo and inhibits transactivation.
    Arsura M; Deshpande A; Hann SR; Sonenshein GE
    Mol Cell Biol; 1995 Dec; 15(12):6702-9. PubMed ID: 8524235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper.
    Lavigne P; Crump MP; Gagné SM; Hodges RS; Kay CM; Sykes BD
    J Mol Biol; 1998 Aug; 281(1):165-81. PubMed ID: 9680483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-specific DNA binding by the c-Myc protein.
    Blackwell TK; Kretzner L; Blackwood EM; Eisenman RN; Weintraub H
    Science; 1990 Nov; 250(4984):1149-51. PubMed ID: 2251503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of binding constant of transcription factor myc-max/max-max and E-box DNA: the effect of inhibitors on the binding.
    Park S; Chung S; Kim KM; Jung KC; Park C; Hahm ER; Yang CH
    Biochim Biophys Acta; 2004 Feb; 1670(3):217-28. PubMed ID: 14980448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA binding by N- and L-Myc proteins.
    Ma A; Moroy T; Collum R; Weintraub H; Alt FW; Blackwell TK
    Oncogene; 1993 Apr; 8(4):1093-8. PubMed ID: 8455937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.