These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 8294728)
41. Effects of zinc on hepatic antioxidant systems and the mRNA expression levels assayed by cDNA microarrays in rats. Jing MY; Sun JY; Zi NT; Sun W; Qian LC; Weng XY Ann Nutr Metab; 2007; 51(4):345-51. PubMed ID: 17726312 [TBL] [Abstract][Full Text] [Related]
42. Influences of Copper/Zinc-Loaded Montmorillonite on Growth Performance, Mineral Retention, Intestinal Morphology, Mucosa Antioxidant Capacity, and Cytokine Contents in Weaned Piglets. Jiao LF; Zhang QH; Wu H; Wang CC; Cao ST; Feng J; Hu CH Biol Trace Elem Res; 2018 Oct; 185(2):356-363. PubMed ID: 29468611 [TBL] [Abstract][Full Text] [Related]
43. Evaluating the influence of National Research Council levels of copper, iron, manganese, and zinc using organic (Bioplex) minerals on resulting tissue mineral concentrations, metallothionein, and liver antioxidant enzymes in grower-finisher swine diets. Gowanlock DW; Mahan DC; Jolliff JS; Hill GM J Anim Sci; 2015 Mar; 93(3):1149-56. PubMed ID: 26020892 [TBL] [Abstract][Full Text] [Related]
44. Metabolism of zinc, copper and iron as affected by dietary protein, cysteine and histidine. Snedeker SM; Greger JL J Nutr; 1983 Mar; 113(3):644-52. PubMed ID: 6827382 [TBL] [Abstract][Full Text] [Related]
45. Effects of dietary cellulose and xylan on absorption and tissue contents of zinc and copper in rats. Jiang KS J Nutr; 1986 Jun; 116(6):999-1006. PubMed ID: 3014095 [TBL] [Abstract][Full Text] [Related]
46. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase. Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588 [TBL] [Abstract][Full Text] [Related]
47. Mineral status of female rats affects the absorption and organ distribution of dietary cadmium derived from edible sunflower kernels (Helianthus annuus L.). Reeves PG; Chaney RL Environ Res; 2001 Mar; 85(3):215-25. PubMed ID: 11237510 [TBL] [Abstract][Full Text] [Related]
48. Effects of elevated zinc intake on the copper metabolism and the pancreas of the mouse. Sutomo FX; Woutersen RA; Van den Hamer CJ J Trace Elem Electrolytes Health Dis; 1992 Jun; 6(2):75-80. PubMed ID: 1384853 [TBL] [Abstract][Full Text] [Related]
49. Transporters in the absorption and utilization of zinc and copper. Hill GM; Link JE J Anim Sci; 2009 Apr; 87(14 Suppl):E85-9. PubMed ID: 18820153 [TBL] [Abstract][Full Text] [Related]
50. Digestibility and retention of zinc, copper, manganese, iron, calcium, and phosphorus in pigs fed diets containing inorganic or organic minerals. Liu Y; Ma YL; Zhao JM; Vazquez-Añón M; Stein HH J Anim Sci; 2014 Aug; 92(8):3407-15. PubMed ID: 24948654 [TBL] [Abstract][Full Text] [Related]
51. NaFe3+EDTA as a food fortificant: influence on zinc, calcium and copper metabolism in the rat. Hurrell RF; Ribas S; Davidsson L Br J Nutr; 1994 Jan; 71(1):85-93. PubMed ID: 8312243 [TBL] [Abstract][Full Text] [Related]
52. Cd, Cu, Zn, Se, and metallothioneins in two amphibians, Necturus maculosus (Amphibia, Caudata) and Bufo bufo (Amphibia, Anura). Dobrovoljc K; Falnoga I; Žnidarič MT; Mazej D; Ščančar J; Bulog B Biol Trace Elem Res; 2012 Dec; 150(1-3):178-94. PubMed ID: 22700180 [TBL] [Abstract][Full Text] [Related]
53. Comparative study of zinc, copper, manganese, and iron concentrations in organs of zinc-deficient rats and rats treated neonatally with l-monosodium glutamate. Sakai T; Miki F; Wariishi M; Yamamoto S Biol Trace Elem Res; 2004 Feb; 97(2):163-82. PubMed ID: 14985626 [TBL] [Abstract][Full Text] [Related]
54. Tissue composition and trace mineral content of the dam and litter under low dietary zinc intake during gestation and lactation of first-litter gilts. Kalinowski J; Chavez ER J Trace Elem Electrolytes Health Dis; 1991 Mar; 5(1):35-46. PubMed ID: 1822325 [TBL] [Abstract][Full Text] [Related]
55. Copper and zinc absorption in the rat: mechanism of mutual antagonism. Oestreicher P; Cousins RJ J Nutr; 1985 Feb; 115(2):159-66. PubMed ID: 3968585 [TBL] [Abstract][Full Text] [Related]
56. On the possible roles of N-terminal His-rich domains of Cu,Zn SODs of some Gram-negative bacteria. Arus D; Jancsó A; Szunyogh D; Matyuska F; Nagy NV; Hoffmann E; Körtvélyesi T; Gajda T J Inorg Biochem; 2012 Jan; 106(1):10-8. PubMed ID: 22105012 [TBL] [Abstract][Full Text] [Related]
57. Lipid alterations in the liver and serum of rats in histidine-excess and copper deficiency. Aoyama Y; Takagi M; Yoshida A J Nutr Sci Vitaminol (Tokyo); 1999 Dec; 45(6):773-83. PubMed ID: 10737230 [TBL] [Abstract][Full Text] [Related]
58. Utilization of copper in copper proteinate, copper lysine, and cupric sulfate using the rat as an experimental model. Du Z; Hemken RW; Jackson JA; Trammell DS J Anim Sci; 1996 Jul; 74(7):1657-63. PubMed ID: 8818812 [TBL] [Abstract][Full Text] [Related]
59. The importance of the non-protein components of the diet in the plasma cholesterol response of rabbits to casein. Zinc and copper. Samman S; Roberts DC Br J Nutr; 1987 Jan; 57(1):27-33. PubMed ID: 3801381 [TBL] [Abstract][Full Text] [Related]