BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 8294960)

  • 1. Posttetanic hyperpolarization produced by electrogenic Na(+)-K+ pump in lizard axons impaled near their motor terminals.
    Morita K; David G; Barrett JN; Barrett EF
    J Neurophysiol; 1993 Nov; 70(5):1874-84. PubMed ID: 8294960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential.
    Barrett EF; Barrett JN
    J Physiol; 1982 Feb; 323():117-44. PubMed ID: 6980272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrogenic pump and a Ca(2+)- dependent K+ conductance contribute to a posttetanic hyperpolarization in lamprey sensory neurons.
    Parker D; Hill R; Grillner S
    J Neurophysiol; 1996 Jul; 76(1):540-53. PubMed ID: 8836242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake of potassium by nonmyelinating Schwann cells induced by axonal activity.
    Robert A; Jirounek P
    J Neurophysiol; 1994 Dec; 72(6):2570-9. PubMed ID: 7897474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that action potentials activate an internodal potassium conductance in lizard myelinated axons.
    David G; Barrett JN; Barrett EF
    J Physiol; 1992 Jan; 445():277-301. PubMed ID: 1501136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for two calcium-dependent potassium conductances in lizard motor nerve terminals.
    Morita K; Barrett EF
    J Neurosci; 1990 Aug; 10(8):2614-25. PubMed ID: 1696981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of tetraethylammonium on the depolarizing after-potential and passive properties of lizard myelinated axons.
    Barrett EF; Morita K; Scappaticci KA
    J Physiol; 1988 Aug; 402():65-78. PubMed ID: 2853225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane ion movements elicited by sodium pump inhibition in Helix aspersa neurons.
    Alvarez-Leefmans FJ; Cruzblanca H; GamiƱo SM; Altamirano J; Nani A; Reuss L
    J Neurophysiol; 1994 May; 71(5):1787-96. PubMed ID: 7520481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of voltage-sensitive Na+ and K+ currents recorded from acutely dissociated pelvic ganglion neurons of the adult rat.
    Yoshimura N; De Groat WC
    J Neurophysiol; 1996 Oct; 76(4):2508-21. PubMed ID: 8899623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axonal and glial currents activated during the post-tetanic hyperpolarization in non-myelinated nerve.
    Robert A; Jirounek P
    Pflugers Arch; 1998 Jul; 436(4):529-37. PubMed ID: 9683725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrogenic pump (Na+/K(+)-ATPase) activity in rat optic nerve.
    Gordon TR; Kocsis JD; Waxman SG
    Neuroscience; 1990; 37(3):829-37. PubMed ID: 2174135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A voltage- and time-dependent rectification in rat dorsal spinal root axons.
    Birch BD; Kocsis JD; Di Gregorio F; Bhisitkul RB; Waxman SG
    J Neurophysiol; 1991 Sep; 66(3):719-28. PubMed ID: 1661325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-dependent depolarizations originating in lizard motor nerve terminals.
    Morita K; Barrett EF
    J Neurosci; 1989 Sep; 9(9):3359-69. PubMed ID: 2677261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delayed depolarization and slow sodium currents in cutaneous afferents.
    Honmou O; Utzschneider DA; Rizzo MA; Bowe CM; Waxman SG; Kocsis JD
    J Neurophysiol; 1994 May; 71(5):1627-37. PubMed ID: 8064338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic currents in giant motor axons of the jellyfish, Aglantha digitale.
    Meech RW; Mackie GO
    J Neurophysiol; 1993 Mar; 69(3):884-93. PubMed ID: 7681867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The voltage dependence of I(h) in human myelinated axons.
    Howells J; Trevillion L; Bostock H; Burke D
    J Physiol; 2012 Apr; 590(7):1625-40. PubMed ID: 22310314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glia-axon interactions and the regulation of the extracellular K+ in the peripheral nerve.
    Jirounek P; Robert A; Kindler E; Blazek T
    Sb Lek; 1998; 99(4):413-22. PubMed ID: 10803282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The electrogenic sodium pump and conductance changes in the post-tetanic hyperpolarization of crayfish median giant axons.
    Nagano M
    Jpn J Physiol; 1977; 27(1):57-70. PubMed ID: 864870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical and morphological factors influencing the depolarizing after-potential in rat and lizard myelinated axons.
    David G; Modney B; Scappaticci KA; Barrett JN; Barrett EF
    J Physiol; 1995 Nov; 489 ( Pt 1)(Pt 1):141-57. PubMed ID: 8583398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of internodal potassium conductance in rat myelinated axons.
    David G; Barrett JN; Barrett EF
    J Physiol; 1993 Dec; 472():177-202. PubMed ID: 8145140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.