These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 8298011)

  • 21. Initiation and stability of reentry in two coupled excitable fibers.
    Palmer A; Brindley J; Holden AV
    Bull Math Biol; 1992 Nov; 54(6):1039-56. PubMed ID: 1515869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Boundary-induced reentry in homogeneous excitable tissue.
    Siso-Nadal F; Otani NF; Gilmour RF; Fox JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031925. PubMed ID: 18851083
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deexcitation of cardiac cells.
    Pumir A; Romey G; Krinsky V
    Biophys J; 1998 Jun; 74(6):2850-61. PubMed ID: 9635739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Termination of spiral wave breakup in a Fitzhugh-Nagumo model via short and long duration stimuli.
    Gray RA
    Chaos; 2002 Sep; 12(3):941-951. PubMed ID: 12779618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vortex shedding as a precursor of turbulent electrical activity in cardiac muscle.
    Cabo C; Pertsov AM; Davidenko JM; Baxter WT; Gray RA; Jalife J
    Biophys J; 1996 Mar; 70(3):1105-11. PubMed ID: 8785270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unpinning of a rotating wave in cardiac muscle by an electric field.
    Pumir A; Krinsky V
    J Theor Biol; 1999 Aug; 199(3):311-9. PubMed ID: 10433895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of nonexcitable cells on spiral breakup in two-dimensional and three-dimensional excitable media.
    ten Tusscher KH; Panfilov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):062902. PubMed ID: 14754247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A space-time adaptive method for simulating complex cardiac dynamics.
    Cherry EM; Greenside HS; Henriquez CS
    Phys Rev Lett; 2000 Feb; 84(6):1343-6. PubMed ID: 11017514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A massively parallel computer model of propagation through a two-dimensional cardiac syncytium.
    Fishler MG; Thakor NV
    Pacing Clin Electrophysiol; 1991 Nov; 14(11 Pt 2):1694-9. PubMed ID: 1721160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pacemaker interactions induce reentrant wave dynamics in engineered cardiac culture.
    Borek B; Shajahan TK; Gabriels J; Hodge A; Glass L; Shrier A
    Chaos; 2012 Sep; 22(3):033132. PubMed ID: 23020471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Persistent tangled vortex rings in generic excitable media.
    Winfree AT
    Nature; 1994 Sep; 371(6494):233-6. PubMed ID: 8078583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions.
    Ten Tusscher KH; Panfilov AV
    Phys Med Biol; 2006 Dec; 51(23):6141-56. PubMed ID: 17110776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of cardiac cell excitation with premature monophasic and biphasic field stimuli: a model study.
    Fishler MG; Sobie EA; Thakor NV; Tung L
    Biophys J; 1996 Mar; 70(3):1347-62. PubMed ID: 8785290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spiral wave induced numerically using electrical stimulation and comparison with experimental results.
    Xu B; Jacquir S; Laurent G; Bilbault JM; Binczak S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2650-3. PubMed ID: 21096190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two biophysical mechanisms of defibrillation of cardiac tissue.
    Pumir A; Krinsky VI
    J Theor Biol; 1997 Mar; 185(2):189-99. PubMed ID: 9135801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling of cardiac electrophysiological mechanisms: from action potential genesis to its propagation in myocardium.
    Bardou AL; Auger PM; Birkui PJ; Chassé JL
    Crit Rev Biomed Eng; 1996; 24(2-3):141-221. PubMed ID: 9108984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry.
    Comtois P; Kneller J; Nattel S
    Europace; 2005 Sep; 7 Suppl 2():10-20. PubMed ID: 16102499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Induced spiral motion in cardiac tissue due to alternans.
    Cameron T; Davidsen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061908. PubMed ID: 23367977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The canine virtual ventricular wall: a platform for dissecting pharmacological effects on propagation and arrhythmogenesis.
    Benson AP; Aslanidi OV; Zhang H; Holden AV
    Prog Biophys Mol Biol; 2008; 96(1-3):187-208. PubMed ID: 17915298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.