These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 8298022)

  • 1. A model-independent approach to assigning bacteriorhodopsin's intramolecular reactions to photocycle intermediates.
    Hessling B; Souvignier G; Gerwert K
    Biophys J; 1993 Nov; 65(5):1929-41. PubMed ID: 8298022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fourier transform infrared double-flash experiments resolve bacteriorhodopsin's M1 to M2 transition.
    Hessling B; Herbst J; Rammelsberg R; Gerwert K
    Biophys J; 1997 Oct; 73(4):2071-80. PubMed ID: 9336202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of back-reactions and proton uptake during the N----O transition in bacteriorhodopsin's photocycle: a kinetic resonance Raman study.
    Ames JB; Mathies RA
    Biochemistry; 1990 Aug; 29(31):7181-90. PubMed ID: 2169875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer.
    Russell TS; Coleman M; Rath P; Nilsson A; Rothschild KJ
    Biochemistry; 1997 Jun; 36(24):7490-7. PubMed ID: 9200698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of hydrogen-bond network in energy storage of bacteriorhodopsin's light-driven proton pump revealed by ab initio normal-mode analysis.
    Hayashi S; Tajkhorshid E; Kandori H; Schulten K
    J Am Chem Soc; 2004 Sep; 126(34):10516-7. PubMed ID: 15327290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved Fourier transform infrared spectroscopy of the polarizable proton continua and the proton pump mechanism of bacteriorhodopsin.
    Wang J; El-Sayed MA
    Biophys J; 2001 Feb; 80(2):961-71. PubMed ID: 11159463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing BR photocycle kinetics.
    Nagle JF; Zimanyi L; Lanyi JK
    Biophys J; 1995 Apr; 68(4):1490-9. PubMed ID: 7787034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared study of the L, M, and N intermediates of bacteriorhodopsin using the photoreaction of M.
    Ormos P; Chu K; Mourant J
    Biochemistry; 1992 Aug; 31(30):6933-7. PubMed ID: 1637826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic characterization of bacteriorhodopsin's L-intermediate in 3D crystals cooled to 170 K.
    Royant A; Edman K; Ursby T; Pebay-Peyroula E; Landau EM; Neutze R
    Photochem Photobiol; 2001 Dec; 74(6):794-804. PubMed ID: 11783935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release.
    Balashov SP; Imasheva ES; Govindjee R; Ebrey TG
    Biophys J; 1996 Jan; 70(1):473-81. PubMed ID: 8770224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton uptake mechanism of bacteriorhodopsin as determined by time-resolved stroboscopic-FTIR-spectroscopy.
    Souvignier G; Gerwert K
    Biophys J; 1992 Nov; 63(5):1393-405. PubMed ID: 19431858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal equilibration between the M and N intermediates in the photocycle of bacteriorhodopsin.
    Druckmann S; Heyn MP; Lanyi JK; Ottolenghi M; Zimanyi L
    Biophys J; 1993 Sep; 65(3):1231-4. PubMed ID: 8241403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the heterogeneity of the M population in the photocycle of bacteriorhodopsin.
    Friedman N; Gat Y; Sheves M; Ottolenghi M
    Biochemistry; 1994 Dec; 33(49):14758-67. PubMed ID: 7993904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein conformational changes in the bacteriorhodopsin photocycle.
    Subramaniam S; Lindahl M; Bullough P; Faruqi AR; Tittor J; Oesterhelt D; Brown L; Lanyi J; Henderson R
    J Mol Biol; 1999 Mar; 287(1):145-61. PubMed ID: 10074413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimated acid dissociation constants of the Schiff base, Asp-85, and Arg-82 during the bacteriorhodopsin photocycle.
    Brown LS; Bonet L; Needleman R; Lanyi JK
    Biophys J; 1993 Jul; 65(1):124-30. PubMed ID: 8369421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective light-induced hydroxylamine reactions occur with C13 = C14 nonisomerizable bacteriorhodopsin pigments.
    Rousso I; Gat Y; Lewis A; Sheves M; Ottolenghi M
    Biophys J; 1998 Jul; 75(1):413-7. PubMed ID: 9649399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization of the L-to-M transition of the bacteriorhodopsin photocycle.
    Hendrickson FM; Burkard F; Glaeser RM
    Biophys J; 1998 Sep; 75(3):1446-54. PubMed ID: 9726946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional significance of a protein conformation change at the cytoplasmic end of helix F during the bacteriorhodopsin photocycle.
    Brown LS; Váró G; Needleman R; Lanyi JK
    Biophys J; 1995 Nov; 69(5):2103-11. PubMed ID: 8580354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspartic acid-212 of bacteriorhodopsin is ionized in the M and N photocycle intermediates: an FTIR study on specifically 13C-labeled reconstituted purple membranes.
    Fahmy K; Weidlich O; Engelhard M; Sigrist H; Siebert F
    Biochemistry; 1993 Jun; 32(22):5862-9. PubMed ID: 8504106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.