These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 8298022)

  • 41. Electric signals during the bacteriorhodopsin photocycle, determined over a wide pH range.
    Ludmann K; Gergely C; Dér A; Váró G
    Biophys J; 1998 Dec; 75(6):3120-6. PubMed ID: 9826632
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Participation of bacteriorhodopsin active-site lysine backbone in vibrations associated with retinal photochemistry.
    Gat Y; Grossjean M; Pinevsky I; Takei H; Rothman Z; Sigrist H; Lewis A; Sheves M
    Proc Natl Acad Sci U S A; 1992 Mar; 89(6):2434-8. PubMed ID: 1549607
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relationship of proton release at the extracellular surface to deprotonation of the schiff base in the bacteriorhodopsin photocycle.
    Cao Y; Brown LS; Sasaki J; Maeda A; Needleman R; Lanyi JK
    Biophys J; 1995 Apr; 68(4):1518-30. PubMed ID: 7787037
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computational studies of the early intermediates of the bacteriorhodopsin photocycle.
    Engels M; Gerwert K; Bashford D
    Biophys Chem; 1995; 56(1-2):95-104. PubMed ID: 7662874
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant.
    Hatcher ME; Hu JG; Belenky M; Verdegem P; Lugtenburg J; Griffin RG; Herzfeld J
    Biophys J; 2002 Feb; 82(2):1017-29. PubMed ID: 11806941
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contribution of proton release to the B2 photocurrent of bacteriorhodopsin.
    Misra S
    Biophys J; 1998 Jul; 75(1):382-8. PubMed ID: 9649395
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photochemical conversion of the O-intermediate to 9-cis-retinal-containing products in bacteriorhodopsin films.
    Popp A; Wolperdinger M; Hampp N; Brüchle C; Oesterhelt D
    Biophys J; 1993 Oct; 65(4):1449-59. PubMed ID: 8274639
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Active internal waters in the bacteriorhodopsin photocycle. A comparative study of the L and M intermediates at room and cryogenic temperatures by infrared spectroscopy.
    Lórenz-Fonfría VA; Furutani Y; Kandori H
    Biochemistry; 2008 Apr; 47(13):4071-81. PubMed ID: 18321068
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A priori resolution of the intermediate spectra in the bacteriorhodopsin photocycle: the time evolution of the L spectrum revealed.
    Zimányi L; Saltiel J; Brown LS; Lanyi JK
    J Phys Chem A; 2006 Feb; 110(7):2318-21. PubMed ID: 16480288
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence for charge-controlled conformational changes in the photocycle of bacteriorhodopsin.
    Sass HJ; Gessenich R; Koch MH; Oesterhelt D; Dencher NA; Büldt G; Rapp G
    Biophys J; 1998 Jul; 75(1):399-405. PubMed ID: 9649397
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Water molecule rearrangements around Leu93 and Trp182 in the formation of the L intermediate in bacteriorhodopsin's photocycle.
    Maeda A; Tomson FL; Gennis RB; Balashov SP; Ebrey TG
    Biochemistry; 2003 Mar; 42(9):2535-41. PubMed ID: 12614147
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of protein conformation change from alpha(II) to alpha(I) on the bacteriorhodopsin photocycle.
    Wang J; El-Sayed MA
    Biophys J; 2000 Apr; 78(4):2031-6. PubMed ID: 10733981
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distortions in the photocycle of bacteriorhodopsin at moderate dehydration.
    Váró G; Lanyi JK
    Biophys J; 1991 Feb; 59(2):313-22. PubMed ID: 2009355
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tight Asp-85--Thr-89 association during the pump switch of bacteriorhodopsin.
    Kandori H; Yamazaki Y; Shichida Y; Raap J; Lugtenburg J; Belenky M; Herzfeld J
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1571-6. PubMed ID: 11171992
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reversible inhibition of proton release activity and the anesthetic-induced acid-base equilibrium between the 480 and 570 nm forms of bacteriorhodopsin.
    Boucher F; Taneva SG; Elouatik S; Déry M; Messaoudi S; Harvey-Girard E; Beaudoin N
    Biophys J; 1996 Feb; 70(2):948-61. PubMed ID: 8789112
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structures of photointermediates and their implications for the proton pump mechanism.
    Kataoka M; Kamikubo H
    Biochim Biophys Acta; 2000 Aug; 1460(1):166-76. PubMed ID: 10984598
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photochemistry of a dual-bacteriorhodopsin system in Haloarcula marismortui: HmbRI and HmbRII.
    Tsai FK; Fu HY; Yang CS; Chu LK
    J Phys Chem B; 2014 Jul; 118(26):7290-301. PubMed ID: 24941450
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The ability of actinic light to modify the bacteriorhodopsin photocycle. Heterogeneity and/or photocooperativity?
    Shrager RI; Hendler RW; Bose S
    Eur J Biochem; 1995 May; 229(3):589-95. PubMed ID: 7758451
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chloride ion binding to bacteriorhodopsin at low pH: an infrared spectroscopic study.
    Kelemen L; Galajda P; Száraz S; Ormos P
    Biophys J; 1999 Apr; 76(4):1951-8. PubMed ID: 10096893
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetic and thermodynamic study of the bacteriorhodopsin photocycle over a wide pH range.
    Ludmann K; Gergely C; Váró G
    Biophys J; 1998 Dec; 75(6):3110-9. PubMed ID: 9826631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.