These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 8298022)

  • 61. Dissecting the photocycle of the bacteriorhodopsin E204Q mutant from kinetic multichannel difference spectra. Extension of the method of singular value decomposition with self-modeling to five components.
    Kulcsár A ; Saltiel J; Zimányi L
    J Am Chem Soc; 2001 Apr; 123(14):3332-40. PubMed ID: 11457069
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evidence for a controlling role of water in producing the native bacteriorhodopsin structure.
    Rousso I; Friedman N; Lewis A; Sheves M
    Biophys J; 1997 Oct; 73(4):2081-9. PubMed ID: 9336203
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Femtosecond primary events in bacteriorhodopsin and its retinal modified analogs: revision of commonly accepted interpretation of electronic spectra of transient intermediates in the bacteriorhodopsin photocycle.
    Abramczyk H
    J Chem Phys; 2004 Jun; 120(23):11120-32. PubMed ID: 15268142
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Chromophore reorientations in the early photolysis intermediates of bacteriorhodopsin.
    Esquerra RM; Che D; Shapiro DB; Lewis JW; Bogomolni RA; Fukushima J; Kliger DS
    Biophys J; 1996 Feb; 70(2):962-70. PubMed ID: 8789113
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Quantum efficiencies of bacteriorhodopsin photochemical reactions.
    Xie AH
    Biophys J; 1990 Nov; 58(5):1127-32. PubMed ID: 2291939
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes.
    Tittor J; Paula S; Subramaniam S; Heberle J; Henderson R; Oesterhelt D
    J Mol Biol; 2002 May; 319(2):555-65. PubMed ID: 12051928
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The cycle of photochromic reactions of a bacteriorhodopsin analog with 4-keto-retinal.
    Druzhko AB; Chamorovsky SK
    Biosystems; 1995; 35(2-3):133-6. PubMed ID: 7488702
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Singular value decomposition with self-modeling applied to determine bacteriorhodopsin intermediate spectra: analysis of simulated data.
    Zimányi L; Kulcsár A; Lanyi JK; Sears DF; Saltiel J
    Proc Natl Acad Sci U S A; 1999 Apr; 96(8):4408-13. PubMed ID: 10200275
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bacteriorhodopsin photocycle at cryogenic temperatures reveals distributed barriers of conformational substates.
    Dioumaev AK; Lanyi JK
    Proc Natl Acad Sci U S A; 2007 Jun; 104(23):9621-6. PubMed ID: 17535910
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Influence of excitation energy on the bacteriorhodopsin photocycle.
    Hendler RW; Dancsházy Z; Bose S; Shrager RI; Tokaji Z
    Biochemistry; 1994 Apr; 33(15):4604-10. PubMed ID: 8161516
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Millisecond Fourier-transform infrared difference spectra of bacteriorhodopsin's M412 photoproduct.
    Braiman MS; Ahl PL; Rothschild KJ
    Proc Natl Acad Sci U S A; 1987 Aug; 84(15):5221-5. PubMed ID: 3474649
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Blue light regeneration of bacteriorhodopsin bleached by continuous light.
    Dancsházy Z; Tokaji Z
    FEBS Lett; 2000 Jul; 476(3):171-3. PubMed ID: 10913607
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evidence for parallel photocycles and implications for the proton pump in bacteriorhodopsin.
    Eisfeld W; Althaus T; Stockburger M
    Biophys Chem; 1995; 56(1-2):105-12. PubMed ID: 17023317
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Existence of two O-like intermediates in the photocycle of
    Tamogami J; Kikukawa T; Nara T; Demura M; Kimura-Someya T; Shirouzu M; Yokoyama S; Miyauchi S; Shimono K; Kamo N
    Biophys Physicobiol; 2017; 14():49-55. PubMed ID: 28560129
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Low temperature FTIR study of the Schiff base reprotonation during the M-to-bR backphotoreaction: Asp 85 reprotonates two distinct types of Schiff base species at different temperatures.
    Takei H; Gat Y; Sheves M; Lewis A
    Biophys J; 1992 Dec; 63(6):1643-53. PubMed ID: 19431867
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Constraints on the flexibility of bacteriorhodopsin's carboxyl-terminal tail at the purple membrane surface.
    Renthal R; Dawson N; Tuley J; Horowitz P
    Biochemistry; 1983 Jan; 22(1):5-12. PubMed ID: 6830763
    [No Abstract]   [Full Text] [Related]  

  • 77. Temperature Dependence of the Krokinobacter rhodopsin 2 Kinetics.
    Eberhardt P; Slavov C; Sörmann J; Bamann C; Braun M; Wachtveitl J
    Biophys J; 2021 Feb; 120(3):568-575. PubMed ID: 33347887
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2.
    Kuhne J; Vierock J; Tennigkeit SA; Dreier MA; Wietek J; Petersen D; Gavriljuk K; El-Mashtoly SF; Hegemann P; Gerwert K
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9380-9389. PubMed ID: 31004059
    [TBL] [Abstract][Full Text] [Related]  

  • 79. pH-sensitive vibrational probe reveals a cytoplasmic protonated cluster in bacteriorhodopsin.
    Lorenz-Fonfria VA; Saita M; Lazarova T; Schlesinger R; Heberle J
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):E10909-E10918. PubMed ID: 29203649
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Catalysis of GTP hydrolysis by small GTPases at atomic detail by integration of X-ray crystallography, experimental, and theoretical IR spectroscopy.
    Rudack T; Jenrich S; Brucker S; Vetter IR; Gerwert K; Kötting C
    J Biol Chem; 2015 Oct; 290(40):24079-90. PubMed ID: 26272610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.