BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

801 related articles for article (PubMed ID: 8298032)

  • 1. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells.
    Kusumi A; Sako Y; Yamamoto M
    Biophys J; 1993 Nov; 65(5):2021-40. PubMed ID: 8298032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compartmentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis.
    Sako Y; Kusumi A
    J Cell Biol; 1994 Jun; 125(6):1251-64. PubMed ID: 8207056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton.
    Sako Y; Nagafuchi A; Tsukita S; Takeichi M; Kusumi A
    J Cell Biol; 1998 Mar; 140(5):1227-40. PubMed ID: 9490734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constrained diffusion or immobile fraction on cell surfaces: a new interpretation.
    Feder TJ; Brust-Mascher I; Slattery JP; Baird B; Webb WW
    Biophys J; 1996 Jun; 70(6):2767-73. PubMed ID: 8744314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether.
    Sako Y; Kusumi A
    J Cell Biol; 1995 Jun; 129(6):1559-74. PubMed ID: 7790354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confined diffusion without fences of a g-protein-coupled receptor as revealed by single particle tracking.
    Daumas F; Destainville N; Millot C; Lopez A; Dean D; Salomé L
    Biophys J; 2003 Jan; 84(1):356-66. PubMed ID: 12524289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of brownian motion of lipids in a membrane.
    Lee GM; Ishihara A; Jacobson KA
    Proc Natl Acad Sci U S A; 1991 Jul; 88(14):6274-8. PubMed ID: 1712486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of non-Brownian diffusion in the cell membrane in single molecule tracking.
    Ritchie K; Shan XY; Kondo J; Iwasawa K; Fujiwara T; Kusumi A
    Biophys J; 2005 Mar; 88(3):2266-77. PubMed ID: 15613635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral diffusion and retrograde movements of individual cell surface components on single motile cells observed with Nanovid microscopy.
    de Brabander M; Nuydens R; Ishihara A; Holifield B; Jacobson K; Geerts H
    J Cell Biol; 1991 Jan; 112(1):111-24. PubMed ID: 1670778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipids undergo hop diffusion in compartmentalized cell membrane.
    Fujiwara T; Ritchie K; Murakoshi H; Jacobson K; Kusumi A
    J Cell Biol; 2002 Jun; 157(6):1071-81. PubMed ID: 12058021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lowering the barriers to random walks on the cell surface.
    Tang Q; Edidin M
    Biophys J; 2003 Jan; 84(1):400-7. PubMed ID: 12524293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time series analysis of particle tracking data for molecular motion on the cell membrane.
    Ying W; Huerta G; Steinberg S; Zúñiga M
    Bull Math Biol; 2009 Nov; 71(8):1967-2024. PubMed ID: 19657701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques.
    Suzuki K; Ritchie K; Kajikawa E; Fujiwara T; Kusumi A
    Biophys J; 2005 May; 88(5):3659-80. PubMed ID: 15681644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the lateral mobility of receptors for luteinizing hormone (LH) in the luteal cell plasma membrane when occupied by ovine LH versus human chorionic gonadotropin.
    Niswender GD; Roess DA; Sawyer HR; Silvia WJ; Barisas BG
    Endocrinology; 1985 Jan; 116(1):164-9. PubMed ID: 2981063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. β-Adducin siRNA disruption of the spectrin-based cytoskeleton in differentiating keratinocytes prevented by calcium acting through calmodulin/epidermal growth factor receptor/cadherin pathway.
    Wu J; Masci PP; Chen C; Chen J; Lavin MF; Zhao KN
    Cell Signal; 2015 Jan; 27(1):15-25. PubMed ID: 25305142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural mosaicism on the submicron scale in the plasma membrane.
    Simson R; Yang B; Moore SE; Doherty P; Walsh FS; Jacobson KA
    Biophys J; 1998 Jan; 74(1):297-308. PubMed ID: 9449330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking movements of lipids and Thy1 molecules in the plasmalemma of living fibroblasts by fluorescence video microscopy with nanometer scale precision.
    Hicks BW; Angelides KJ
    J Membr Biol; 1995 Apr; 144(3):231-44. PubMed ID: 7658460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unconfined lateral diffusion and an estimate of pericellular matrix viscosity revealed by measuring the mobility of gold-tagged lipids.
    Lee GM; Zhang F; Ishihara A; McNeil CL; Jacobson KA
    J Cell Biol; 1993 Jan; 120(1):25-35. PubMed ID: 8416991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of alpha3 GlyR single particle tracking in the cell membrane.
    Notelaers K; Rocha S; Paesen R; Smisdom N; De Clercq B; Meier JC; Rigo JM; Hofkens J; Ameloot M
    Biochim Biophys Acta; 2014 Mar; 1843(3):544-53. PubMed ID: 24316136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane.
    Sheets ED; Lee GM; Simson R; Jacobson K
    Biochemistry; 1997 Oct; 36(41):12449-58. PubMed ID: 9376349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.