These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 8298049)
1. Orthophosphate and the fastest component of the mechanical transient in skinned muscle fibers. Horiuti K; Sakoda T Biophys J; 1993 Nov; 65(5):2261-4. PubMed ID: 8298049 [No Abstract] [Full Text] [Related]
2. A three-line muscle cross-bridge cycle with strain-dependent ligand releases. Smith D Biophys J; 1995 Apr; 68(4 Suppl):215S. PubMed ID: 7787071 [No Abstract] [Full Text] [Related]
3. A new method for the time-resolved measurement of phosphate release in permeabilized muscle fibers. Ferenczi MA; He ZH; Chillingworth RK; Brune M; Corrie JE; Trentham DR; Webb MR Biophys J; 1995 Apr; 68(4 Suppl):191S-192S; discussion 192S-193S. PubMed ID: 7787066 [TBL] [Abstract][Full Text] [Related]
4. Regulation of tension development by MgADP and Pi without Ca2+. Role in spontaneous tension oscillation of skeletal muscle. Shimizu H; Fujita T; Ishiwata S Biophys J; 1992 May; 61(5):1087-98. PubMed ID: 1600074 [TBL] [Abstract][Full Text] [Related]
5. Strain sensitivity and turnover rate of low force cross-bridges in contracting skeletal muscle fibers in the presence of phosphate. Iwamoto H Biophys J; 1995 Jan; 68(1):243-50. PubMed ID: 7711247 [TBL] [Abstract][Full Text] [Related]
9. Transient contraction of muscle fibers on photorelease of ATP at intermediate concentrations of Ca2+. Horiuti K; Kagawa K; Yamada K Biophys J; 1994 Nov; 67(5):1925-32. PubMed ID: 7858129 [TBL] [Abstract][Full Text] [Related]
11. Normal muscle energy metabolism. Kushmerick MJ Adv Exp Med Biol; 1984; 178():339-50. PubMed ID: 6542301 [No Abstract] [Full Text] [Related]
12. Flash and smash: rapid freezing of muscle fibers activated by photolysis of caged ATP. Hirose K; Lenart TD; Murray JM; Franzini-Armstrong C; Goldman YE Biophys J; 1993 Jul; 65(1):397-408. PubMed ID: 8369445 [TBL] [Abstract][Full Text] [Related]
13. Effects of phosphate and ADP on shortening velocity during maximal and submaximal calcium activation of the thin filament in skeletal muscle fibers. Metzger JM Biophys J; 1996 Jan; 70(1):409-17. PubMed ID: 8770217 [TBL] [Abstract][Full Text] [Related]
14. Correlations of ATP content with mechanical properties of metabolically inhibited muscle. Murphy RA Am J Physiol; 1966 Nov; 211(5):1082-8. PubMed ID: 5924029 [No Abstract] [Full Text] [Related]
15. The role of three-state docking of myosin S1 with actin in force generation. Geeves MA; Conibear PB Biophys J; 1995 Apr; 68(4 Suppl):194S-199S; discussion 199S-201S. PubMed ID: 7787067 [TBL] [Abstract][Full Text] [Related]
16. Mechanochemical coupling in muscle: attempts to measure simultaneously shortening and ATPase rates in myofibrils. Lionne C; Travers F; Barman T Biophys J; 1996 Feb; 70(2):887-95. PubMed ID: 8789106 [TBL] [Abstract][Full Text] [Related]
17. Influence of inorganic phosphate and pH on ATP utilization in fast and slow skeletal muscle fibers. Potma EJ; van Graas IA; Stienen GJ Biophys J; 1995 Dec; 69(6):2580-9. PubMed ID: 8599665 [TBL] [Abstract][Full Text] [Related]
18. Mechanical response to photochemical release of ATP within skinned muscle fibres. Hibberd MG; Goldman YE; Trentham DR Biochem Soc Trans; 1983 Apr; 11 Pt 2():151. PubMed ID: 6603378 [No Abstract] [Full Text] [Related]
19. Effects of pH on myofibrillar ATPase activity in fast and slow skeletal muscle fibers of the rabbit. Potma EJ; van Graas IA; Stienen GJ Biophys J; 1994 Dec; 67(6):2404-10. PubMed ID: 7696480 [TBL] [Abstract][Full Text] [Related]
20. The myofibril as a model for muscle fiber ATPase. Lionne C; Herrmann C; Travers F; Barman T Biophys J; 1995 Apr; 68(4 Suppl):217S. PubMed ID: 7787073 [No Abstract] [Full Text] [Related] [Next] [New Search]