BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8298054)

  • 1. Characterization of aminoacyl-adenylates in B. subtilis tryptophanyl-tRNA synthetase, by the fluorescence of tryptophan analogs 5-hydroxytryptophan and 7-azatryptophan.
    Hogue CW; Szabo AG
    Biophys Chem; 1993 Dec; 48(2):159-69. PubMed ID: 8298054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A concerted tryptophanyl-adenylate-dependent conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase revealed by the fluorescence of Trp92.
    Hogue CW; Doublié S; Xue H; Wong JT; Carter CW; Szabo AG
    J Mol Biol; 1996 Jul; 260(3):446-66. PubMed ID: 8757806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthetic incorporation of tryptophan analogues into staphylococcal nuclease: effect of 5-hydroxytryptophan and 7-azatryptophan on structure and stability.
    Wong CY; Eftink MR
    Protein Sci; 1997 Mar; 6(3):689-97. PubMed ID: 9070451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of enantiomerically pure L-7-azatryptophan by an enzymatic method and its application to the development of a fluorimetric activity assay for tryptophanyl-tRNA synthetase.
    Brennan JD; Hogue CW; Rajendran B; Willis KJ; Szabo AG
    Anal Biochem; 1997 Oct; 252(2):260-70. PubMed ID: 9344412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorescence and optically detected magnetic resonance characterization of the environments of tryptophan analogues in staphylococcal nuclease, its V66W mutant, and Delta 137-149 fragment.
    Ozarowski A; Wu JQ; Davis SK; Wong CY; Eftink MR; Maki AH
    Biochemistry; 1998 Jun; 37(25):8954-64. PubMed ID: 9636037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence based structural analysis of tryptophan analogue-AMP formation in single tryptophan mutants of Bacillus stearothermophilus tryptophanyl-tRNA synthetase.
    Acchione M; Guillemette JG; Twine SM; Hogue CW; Rajendran B; Szabo AG
    Biochemistry; 2003 Dec; 42(50):14994-5002. PubMed ID: 14674776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emitting state of 5-hydroxyindole, 5-hydroxytryptophan, and 5-hydroxytryptophan incorporated in proteins.
    Petrović DM; Hesp BH; Broos J
    J Phys Chem B; 2013 Sep; 117(37):10792-7. PubMed ID: 24020960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding.
    Sever S; Rogers K; Rogers MJ; Carter C; Söll D
    Biochemistry; 1996 Jan; 35(1):32-40. PubMed ID: 8555191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and activity of an aminoacyl-tRNA synthetase that charges tRNA with nitro-tryptophan.
    Buddha MR; Crane BR
    Nat Struct Mol Biol; 2005 Mar; 12(3):274-5. PubMed ID: 15723076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical modifications of Bacillus subtilis tryptophanyl-tRNA synthetase.
    Xue H; Xue Y; Doublié S; Carter CW
    Biochem Cell Biol; 1997; 75(6):709-15. PubMed ID: 9599659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitization of lanthanides by nonnatural amino acids.
    Brennan JD; Capretta A; Yong K; Gerritsma D; Flora KK; Jones A
    Photochem Photobiol; 2002 Feb; 75(2):117-21. PubMed ID: 11883598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells.
    Zhang Z; Alfonta L; Tian F; Bursulaya B; Uryu S; King DS; Schultz PG
    Proc Natl Acad Sci U S A; 2004 Jun; 101(24):8882-7. PubMed ID: 15187228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-natural amino acid fluorophores for one- and two-step fluorescence resonance energy transfer applications.
    Rogers JM; Lippert LG; Gai F
    Anal Biochem; 2010 Apr; 399(2):182-9. PubMed ID: 20036210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two essential regions for tRNA recognition in Bacillus subtilis tryptophanyl-tRNA synthetase.
    Jia J; Xu F; Chen X; Chen L; Jin Y; Wang DT
    Biochem J; 2002 Aug; 365(Pt 3):749-56. PubMed ID: 11966471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interconversion of ATP binding and conformational free energies by tryptophanyl-tRNA synthetase: structures of ATP bound to open and closed, pre-transition-state conformations.
    Retailleau P; Huang X; Yin Y; Hu M; Weinreb V; Vachette P; Vonrhein C; Bricogne G; Roversi P; Ilyin V; Carter CW
    J Mol Biol; 2003 Jan; 325(1):39-63. PubMed ID: 12473451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three G.C base pairs required for the efficient aminoacylation of tRNATrp by tryptophanyl-tRNA synthetase from Bacillus subtilis.
    Xu F; Jiang G; Li W; He X; Jin Y; Wang D
    Biochemistry; 2002 Jun; 41(25):8087-92. PubMed ID: 12069601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of Pyrococcus horikoshii tryptophanyl-tRNA synthetase and structure-based phylogenetic analysis suggest an archaeal origin of tryptophanyl-tRNA synthetase.
    Dong X; Zhou M; Zhong C; Yang B; Shen N; Ding J
    Nucleic Acids Res; 2010 Mar; 38(4):1401-12. PubMed ID: 19942682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new intrinsic fluorescent probe for proteins. Biosynthetic incorporation of 5-hydroxytryptophan into oncomodulin.
    Hogue CW; Rasquinha I; Szabo AG; MacManus JP
    FEBS Lett; 1992 Oct; 310(3):269-72. PubMed ID: 1383030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence properties of recombinant tropomyosin containing tryptophan, 5-hydroxytryptophan and 7-azatryptophan.
    Das K; Ashby KD; Smirnov AV; Reinach FC; Petrich JW; Farah CS
    Photochem Photobiol; 1999 Nov; 70(5):719-30. PubMed ID: 10568167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational identification of an essential tryptophan in tryptophanyl-tRNA synthetase of Bacillus subtilis.
    Chow KC; Xue H; Shi W; Wong JT
    J Biol Chem; 1992 May; 267(13):9146-9. PubMed ID: 1577751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.